A novel polarizer based on the dissolution-dynamic nuclear polarization (DNP) method has been designed, built and tested. The polarizer differs from those previously described by being designed with sterile use intent and being compatible with clinical use. The main features are: (1) an integral, disposable fluid path containing all pharmaceuticals constituting a sterile barrier, (2) a closed-cycle cryogenic system designed to eliminate consumption of liquid cryogens and (3) multi-sample polarization to increase throughput. The fluid path consists of a vial with the agent to be polarized, a pair of concentric inlet and outlet tubes connected to a syringe with dissolution medium and a receiver, respectively. The fluid path can operate at up to 400 K and 2.0 MPa and generates volumes as high as 100 mL. An inline filter removes the amount of electron paramagnetic agent in the final product by more than 100-fold in the case of [1-(13)C]pyruvate. The system uses a sorption pump in conjunction with a conventional cryocooler. The system operates through cycles of pumping to low temperature and regeneration of the sorption pump. The magnet accommodates four samples at the same time. A temperature of less than 1 K was achieved for 68 h (no sample heat loads) with a liquid helium volume of 2.4 L. The regeneration of the liquid helium could be achieved in less than 10 h, and the transition to cold (< 1.2 K) was achieved in less than 90 min. A solid state polarization of 36 ± 4% for [1-(13)C]pyruvic acid was obtained with only 10 mW of microwave power. The loading of a sample adds less than 50 J of heat to the helium bath by introducing the sample over 15 min. The heat load imposed on the helium bath during dissolution was less than 70 J. The measured liquid state polarization was 18 ± 2%.
I IntroductionAlcator C-MOD', the third high-field compact tokamak in the Alcator line, has been operating tokamak plasmas since May 1993. Its design capability includes toroidal field, BT = 9 T, plasma current I, up to 3 MA, in plasmas with major radius R = 0.67 m, minor radius a = 0.21 m, with elongation up to n = 1.8. Divertor operation can be either into its closed, baffled, divertor chamber or to open flat plates. The magnetic configuration is rather similar to that presently envisaged for the International Thermonuclear Experimental Reactor, ITER, except that it is about a factor of ten smaller.The high particle-, current-and power-densities characteristic of such compact tokamaks lead to edge conditions that are in many respects comparable to those expected in ITER, and offer the opportunity to investigate so-called dissipative divertor operation, in which the power scraped off into the divertor is exhausted through a combination of neutral and radiative processes rather than through plasma conduction direct to the divertor plates.Alcator C-MOD offers excellent port access to the plasma for diagnostic and heating purposes. Its present complement of diagnostics includes full magnetics for equilibrium reconstruction, electron temperature profiles from electron cyclotron emission (ECE), density profiles from a ten-channel CO 2 laser interferometer, ion temperature profiles from high-resolution x-ray doppler measurements, neutron emission, and fast neutral particle analysis, various spectroscopic measurements such as visible bremsstrahlung, H. arrays, and vacuum ultraviolet impurity measurements, bolometer arrays, and x-ray and UV tomography. In addition, detailed edge, scrape-off-layer and divertor diagnosis based on probes and spectroscopy is available.The primary auxiliary heating method in the short term is ICRF, and two transmitters are available, providing a total 4 MW at 80 MHz. Thus far, experiments have concentrated on plasma coupling studies using a movable monopole antenna. Good power coupling into high density plasmas has been obtained, with loading resistance in the range of 5 to 15 Q, 2 in reasonable agreement with the theoretical calculations.So far the magnetic field has been limited to about 5.3 T awaiting power systems upgrades that will enable full-field operation next year. Even so, plasma currents up to 1 MA have been obtained, and durations over 1 second. Peak electron densities up to 9 x 1020 m-3, and temperatures up to T = 2.6, Ti = 1.6 keV have been achieved. Energy confinement is observed to exceed Neo-Alcator scaling.In section II we review some MHD and operational characteristics of the plasma.Section III discusses divertor experiments, section IV the confinement results, and section V the first ICRF coupling studies. II MHD and OperationA unique feature of the design of Alcator C-MOD is its thick stainless-steel vacuum vessel and structure. For reasons of mechanical strength, these have no insulating breaks and thus constitute 'shorted turns' on the ohmic transformer and the eddy ...
A measurement of direct photon production in 208 Pb+ 208 Pb collisions at 158 A GeV has been carried out in the CERN WA98 experiment. The invariant yield of direct photons in central collisions is extracted as a function of transverse momentum in the interval 0.5 < pT < 4 GeV/c. A significant direct photon signal, compared to statistical and systematical errors, is seen at pT > 1.5 GeV/c. The results constitute the first observation of direct photons in ultrarelativistic heavy-ion collisions which could be significant for diagnosis of quark gluon plasma formation. 25.75.+r,13.40.-f,24.90.+p 1
The restoration of chiral symmetry and its subsequent breaking through a phase transition has been predicted to create regions of Disoriented Chiral Condensates (DCC). This phenomenon has been predicted to cause anomalous fluctuations in the relative production of charged and neutral pions in high-energy hadronic and nuclear collisions. The WA98 experiment has been used to measure charged and photon multiplicities in the central region of 158 AGeV Pb+Pb collisions at the CERN SPS. In a sample of 212646 events, no clear DCC signal can be distinguished. Using a simple DCC model, we have set a 90% C.L. upper limit on the maximum DCC production allowed by the data.
A high granularity preshower detector has been fabricated and installed in the WA98 Experiment at the CERN SPS for measuring the spatial distribution of photons produced in the forward region in lead ion induced interactions. Photons are counted by detecting the preshower signal in plastic scintillator pads placed behind a 3 radiation length thick lead converter and applying a threshold on the scintillator signal to reject the minimum ionizing particles. Techniques to improve the imaging of the fibre and performance of the detector in the high multiplicity environment of lead-lead collisions are described. Using Monte-Carlo simulation methods and test beam data of π − and e − at various energies the photon counting efficiency is estimated to be 68% for central and 73% for peripheral Pb+Pb collisions. : 24.85.+p, 25.75.-q PACS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.