A study of vector boson scattering in pp collisions at a center-of-mass energy of 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.4 fb −1 collected with the CMS detector. Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and high dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign W-boson pair production. The observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for W AE W AE and WZ processes in the fiducial region are reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons.
Angular distributions of the decay B 0 → K * 0 µ + µ − are studied using a sample of proton-proton collisions at √ s = 8 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 20.5 fb −1 . An angular analysis is performed to determine the P 1 and P 5 parameters, where the P 5 parameter is of particular interest because of recent measurements that indicate a potential discrepancy with the standard model predictions. Based on a sample of 1397 signal events, the P 1 and P 5 parameters are determined as a function of the dimuon invariant mass squared. The measurements are in agreement with predictions based on the standard model.
The first observation of electroweak production of same-sign W boson pairs in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 35.9 fb^{-1} collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. Events are selected by requiring exactly two leptons (electrons or muons) of the same charge, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. The observed significance of the signal is 5.5 standard deviations, where a significance of 5.7 standard deviations is expected based on the standard model. The ratio of measured event yields to that expected from the standard model at leading order is 0.90±0.22. A cross section measurement in a fiducial region is reported. Bounds are given on the structure of quartic vector boson interactions in the framework of dimension-8 effective field theory operators and on the production of doubly charged Higgs bosons.
A measurement of the single-top-quark t-channel production cross section in pp collisions at √ s = 7 TeV with the CMS detector at the LHC is presented. Two different and complementary approaches have been followed. The first approach exploits the distributions of the pseudorapidity of the recoil jet and reconstructed top-quark mass using background estimates determined from control samples in data. The second approach is based on multivariate analysis techniques that probe the compatibility of the candidate events with the signal. Data have been collected for the muon and electron final states, corresponding to integrated luminosities of 1.17 and 1.56 fb −1 , respectively. The single-topquark production cross section in the t-channel is measured to be 67.2±6.1 pb, in agreement with the approximate next-to-next-to-leading-order standard model prediction. Using the standard model electroweak couplings, the CKM matrix element |V tb | is measured to be 1.020 ± 0.046 (meas.) ± 0.017 (theor.). Keywords: Hadron-Hadron Scattering Conclusions 21The CMS collaboration 27 IntroductionSingle top quarks can be produced through charged-current electroweak interactions. Due to the large top-quark mass, these processes are well suited to test the predictions of the standard model (SM) of particle physics and to search for new phenomena. Measurements of the single-top-quark production cross section also provide an unbiased determination of the magnitude of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |V tb |. Single-top-quark production was observed in proton-antiproton collisions at the Tevatron collider with a centre-of-mass energy of 1. by a factor of 20 at the Large Hadron Collider (LHC) with respect to the Tevatron. The first measurements of the single-top-quark production cross section in proton-proton collisions at a centre-of-mass energy of 7 TeV were performed by the Compact Muon Solenoid (CMS) [4] and ATLAS [5,6] experiments.Previous measurements are compatible with expectations based on approximate nextto-leading-order and next-to-next-to-leading-logarithm (NLO+NNLL) perturbative quantum chromodynamics (QCD) calculations. In these calculations, three types of parton scattering processes are considered: t-channel and s-channel processes, and W-associated single-top-quark production (tW). The dominant contribution to the cross section is expected to be from the t-channel process with a cross section of σ th t-ch. = 64.6 +2.1 −0.7for a top-quark mass of m t = 172.5 GeV/c 2 .This paper extends the previous CMS measurement [4] of the t-channel cross section. The single-top-quark production cross section measurement is based on pp collision data at √ s = 7 TeV collected during 2011 with the CMS experiment, corresponding to integrated luminosities of 1.17 and 1.56 fb −1 with muon and electron final states, respectively. Events with leptonically decaying W bosons are selected: t → bW → b ν ( = e or µ). This measurement is used to determine the CKM matrix element |V tb |.The t-channel event signature (figure 1)...
Search for an L µ − L τ gauge boson using Z → 4µ events in proton-proton collisions at √ s = 13 TeVThe CMS Collaboration * Abstract A search for a narrow Z gauge boson with a mass between 5 and 70 GeV resulting from an L µ − L τ U(1) local gauge symmetry is reported. Theories that predict such a particle have been proposed as an explanation of various experimental discrepancies, including the lack of a dark matter signal in direct-detection experiments, tension in the measurement of the anomalous magnetic moment of the muon, and reports of possible lepton flavor universality violation in B meson decays. A data sample of proton-proton collisions at a center-of-mass energy of 13 TeV is used, corresponding to an integrated luminosity of 77.3 fb −1 recorded in 2016 and 2017 by the CMS detector at the LHC. Events containing four muons with an invariant mass near the standard model Z boson mass are analyzed, and the selection is further optimized to be sensitive to the events that may contain Z → Z µµ → 4µ decays. The event yields are consistent with the standard model predictions. Upper limits of 10 −8 -10 −7 at 95% confidence level are set on the product of branching fractions B(Z → Z µµ)B(Z → µµ), depending on the Z mass, which excludes a Z boson coupling strength to muons above 0.004-0.3. These are the first dedicated limits on L µ − L τ models at the LHC and result in a significant increase in the excluded model parameter space. The results of this search may also be used to constrain the coupling strength of any light Z gauge boson to muons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.