Studies of the spin and parity quantum numbers of the Higgs boson are presented, based on proton–proton collision data collected by the ATLAS experiment at the LHC. The Standard Model spin–parity JP=0+JP=0+ hypothesis is compared with alternative hypotheses using the Higgs boson decays H→γγH→γγ, H→ZZ⁎→4ℓH→ZZ⁎→4ℓ and H→WW⁎→ℓνℓνH→WW⁎→ℓνℓν, as well as the combination of these channels. The analysed dataset corresponds to an integrated luminosity of 20.7 fb−1 collected at a centre-of-mass energy of √s=8TeV. For the H→ZZ⁎→4ℓH→ZZ⁎→4ℓ decay mode the dataset corresponding to an integrated luminosity of 4.6 fb−1 collected at √s=7TeV is included. The data are compatible with the Standard Model JP=0+JP=0+ quantum numbers for the Higgs boson, whereas all alternative hypotheses studied in this Letter, namely some specific JP=0−,1+,1−,2+JP=0−,1+,1−,2+ models, are excluded at confidence levels above 97.8%. This exclusion holds independently of the assumptions on the coupling strengths to the Standard Model particles and in the case of the JP=2+JP=2+ model, of the relative fractions of gluon-fusion and quark–antiquark production of the spin-2 particle. The data thus provide evidence for the spin-0 nature of the Higgs boson, with positive parity being strongly preferre
A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb −1 of proton-proton collisions data at ffiffi ffi s p ¼ 7 TeV and 20.3 fb −1 at ffiffi ffi s p ¼ 8 TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be μ ¼ 1.17 AE 0.27 at the value of the Higgs boson mass measured by ATLAS, m H ¼ 125.4 GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of m H . They are found to be μ ggF ¼ 1.32 AE 0.38, μ VBF ¼ 0.8 AE 0.7, μ WH ¼ 1.0 AE 1.6, μ ZH ¼ 0.1 þ3.7 −0.1 , and μ ttH ¼ 1.6 þ2.7 −1.8 , for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a W or Z boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.
This paper presents results of searches for the electroweak production of supersymmetric particles in models with compressed mass spectra. The searches use 139 fb −1 of ffiffi ffi s p ¼ 13 TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider. Events with missing transverse momentum and two same-flavor, oppositely charged, low-transverse-momentum leptons are selected, and are further categorized by the presence of hadronic activity from initial-state radiation or a topology compatible with vector-boson fusion processes. The data are found to be consistent with predictions from the Standard Model. The results are interpreted using simplified models of R-parity-conserving supersymmetry in which the lightest supersymmetric partner is a neutralino with a mass similar to the lightest chargino, the second-to-lightest neutralino, or the slepton. Lower limits on the masses of charginos in different simplified models range from 193 to 240 GeV for moderate mass splittings, and extend down to mass splittings of 1.5 to 2.4 GeV at the LEP chargino bounds (92.4 GeV). Similar lower limits on degenerate light-flavor sleptons extend up to masses of 251 GeV and down to mass splittings of 550 MeV. Constraints on vector-boson fusion production of electroweak SUSY states are also presented.
A search for electroweak production of supersymmetric particles in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum is presented. This search uses proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015-2016, corresponding to 36.1 fb −1 of integrated luminosity at ffiffi ffi s p ¼ 13 TeV. Events with sameflavor pairs of electrons or muons with opposite electric charge are selected. The data are found to be consistent with the Standard Model prediction. Results are interpreted using simplified models of R-parityconserving supersymmetry in which there is a small mass difference between the masses of the produced supersymmetric particles and the lightest neutralino. Exclusion limits at 95% confidence level are set on next-to-lightest neutralino masses of up to 145 GeV for Higgsino production and 175 GeV for wino production, and slepton masses of up to 190 GeV for pair production of sleptons. In the compressed mass regime, the exclusion limits extend down to mass splittings of 2.5 GeV for Higgsino production, 2 GeV for wino production, and 1 GeV for slepton production. The results are also interpreted in the context of a radiatively-driven natural supersymmetry model with nonuniversal Higgs boson masses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.