The launch of the European Space Agency (ESA)'s Soil Moisture and Ocean Salinity (SMOS) satellite mission in November 2009 opened a new era of global passive monitoring at L-band (1.4-GHz band reserved for radio astronomy). The main objective of the mission is to measure soil moisture and sea surface salinity; the sole payload is the Microwave Imaging Radiometer using Aperture Synthesis. As part of comprehensive calibration and validation activities, several ground-based L-band radiometers, so-called ETH L-Band radiometers for soil moisture research (ELBARA-II), have been deployed. In this paper, we analyze a comprehensive set of measurements from one ELBARA-II deployment site in the northern boreal forest zone. The focus of this paper is in the detection of the evolution of soil frost (a relevant topic, e.g., for the study of carbon and methane cycles at high latitudes). We investigate the effects that soil freeze/thaw processes have on the L-band signature and present a simple modeling approach to analyze the relation between frost depth and the observed brightness temperature. Airborne observations are used to expand the analysis for different land cover types. Finally, the first SMOS observations from the same period are analyzed. Results show that soil freezing and thawing processes have an observable effect on the L-band signature of soil. Furthermore, the presented emission model is able to relate the observed dynamics in brightness temperature to the increase of soil frost.
This paper evaluates the capability of interferometric global navigation satellite system reflectometry (GNSS-R) to perform sea surface altimetry in a synoptic scenario. Such purpose, which requires the combination of the results from different GNSS signals, constitutes a unique characteristic of this approach. Interferometric GNSS-R group delay altimetry has been proven to be more precise than conventional GNSS-R. However, the self-consistency and accuracy of their synoptic solutions (simultaneous multi-static results) have never been proved before. In our work, we analyze a dataset of GNSS signals reflected off the Baltic Sea acquired during an airborne campaign using a receiver that was developed for such a purpose. Among other features, it enables beamformer capability in post-processing to get multiple and simultaneous GNSS signals under the interferometric approach’s restrictions. In particular, the signals from two GPS and two Galileo satellites, at two frequency bands (L1 and L5), covering an elevation range between 28° and 83°, are processed to retrieve sea surface height estimations. The results obtained are self-consistent among the different GNSS signals and data tracks, with discrepancies between 0.01 and 0.26 m. Overall, they agree with ancillary information at 0.40 m level, following a characteristic height gradient present at the experimental site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.