Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17–29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn’s disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.
The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRaP URL' above for details on accessing the published version and note that access may require a subscription.
We conducted a combined genome-wide association (GWAS) analysis of 7,481 individuals affected with bipolar disorder and 9,250 control individuals within the Psychiatric Genomewide Association Study Consortium Bipolar Disorder group (PGC-BD). We performed a replication study in which we tested 34 independent SNPs in 4,493 independent bipolar disorder cases and 42,542 independent controls and found strong evidence for replication. In the replication sample, 18 of 34 SNPs had P value < 0.05, and 31 of 34 SNPs had signals with the same direction of effect (P = 3.8 × 10−7). In the combined analysis of all 63,766 subjects (11,974 cases and 51,792 controls), genome-wide significant evidence for association was confirmed for CACNA1C and found for a novel gene ODZ4. In a combined analysis of non-overlapping schizophrenia and bipolar GWAS samples we observed strong evidence for association with SNPs in CACNA1C and in the region of NEK4/ITIH1,3,4. Pathway analysis identified a pathway comprised of subunits of calcium channels enriched in the bipolar disorder association intervals. The strength of the replication data implies that increasing samples sizes in bipolar disorder will confirm many additional loci.
The heterogeneity of neural gene expression and the spatially limited expression of many low-abundance messenger RNAs in the brain has made cloning and analysis of such messages difficult. To generate amounts of nucleic acids sufficient for use in standard cloning strategies, we have devised a method for producing amplified heterogeneous populations of RNA from limited quantities of cDNA. Whole cerebellar RNA was primed with a synthetic oligonucleotide containing the T7 RNA polymerase promoter sequence 5' to a polythymidyate region. After second-strand cDNA synthesis,
A cardinal symptom of major depressive disorder (MDD) is the disruption of circadian patterns. However, to date, there is no direct evidence of circadian clock dysregulation in the brains of patients who have MDD. Circadian rhythmicity of gene expression has been observed in animals and peripheral human tissues, but its presence and variability in the human brain were difficult to characterize. Here, we applied time-of-death analysis to gene expression data from high-quality postmortem brains, examining 24-h cyclic patterns in six cortical and limbic regions of 55 subjects with no history of psychiatric or neurological illnesses (“controls”) and 34 patients with MDD. Our dataset covered ∼12,000 transcripts in the dorsolateral prefrontal cortex, anterior cingulate cortex, hippocampus, amygdala, nucleus accumbens, and cerebellum. Several hundred transcripts in each region showed 24-h cyclic patterns in controls, and >100 transcripts exhibited consistent rhythmicity and phase synchrony across regions. Among the top-ranked rhythmic genes were the canonical clock genes BMAL1(ARNTL), PER1-2-3, NR1D1(REV-ERBa), DBP, BHLHE40 (DEC1) , and BHLHE41(DEC2) . The phasing of known circadian genes was consistent with data derived from other diurnal mammals. Cyclic patterns were much weaker in the brains of patients with MDD due to shifted peak timing and potentially disrupted phase relationships between individual circadian genes. This transcriptome-wide analysis of the human brain demonstrates a rhythmic rise and fall of gene expression in regions outside of the suprachiasmatic nucleus in control subjects. The description of its breakdown in MDD suggests potentially important molecular targets for treatment of mood disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.