In December 2013, the Defense Advanced Research Projects Agency (DARPA) Robotics Challenge (DRC) Trials were held in Homestead, Florida. The DRC Trials were designed to test the capabilities of humanoid robots in disaster response scenarios with degraded communications. Each team created their own interaction method to control their robot, either the Boston Dynamics Atlas robot or a robot built by the team itself. Of the 15 competing teams, eight participated in our study of human-robot interaction. We observed the participating teams from the field (with the robot) and in the control room (with the operators), noting many performance metrics, such as critical incidents and utterances, and categorizing their interaction methods according to the number of operators, control methods, and amount of interaction. We decomposed each task into a series of subtasks, different from the DRC Trials official subtasks for points, to gain a better understanding of each team's performance in varying complexities of mobility and manipulation. Each team's interaction methods have been compared to their performance, and correlations have been analyzed to understand why some teams ranked higher than others. We discuss lessons learned from this study, and we have found in general that the guidelines for human-robot interaction for unmanned ground vehicles still hold true: more sensor fusion, fewer operators, and more automation lead to better performance. C 2015 Wiley Periodicals, Inc.Journal of Field Robotics DOI 10.1002/rob 422 • Journal of Field Robotics-2015 primary guidelines applicable to the design of HRI within the USAR domain:
We are developing a prototype storytelling robot for use with children in rehabilitation. Children can remotely control a large furry robot by using a variety of body sensors adapted to their disability or rehabilitation goal. In doing so, they can teach the robot to act out emotions (e.g. sad, happy, excited) and then write stories using the storytelling software and include those emotions in the story. The story can then be "played" by the remote controlled robot, which acts out the story and the emotions. We believe that this robot can motivate the children and help them reach their therapy goals through therapeutic play, either by exercising muscles or joints (e.g. for physically challenges children) or by reflecting on the expression of emotions (e.g. for autistic children). We use an innovative design methodology involving children as design partners.
The Defense Automated Neurobehavioral Assessment (DANA) is a new neurocognitive assessment tool that includes a library of standardized cognitive and psychological assessments, with three versions that range from a brief 5-minute screen to a 45-minute complete assessment. DANA is written using the Android open-source operating system and is suitable for multiple mobile platforms. This article presents testing of DANA by 224 active duty U.S. service members in five operationally relevant environments (desert, jungle, mountain, arctic, and shipboard). DANA was found to be a reliable instrument and compared favorably to other computer-based neurocognitive assessments. Implications for using DANA in far-forward military settings are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.