Autism is a heterogeneous neurodevelopmental disorder of unknown aetiology that affects 1 in 100–150 individuals. Diagnosis is based on three categories of behavioural criteria: abnormal social interactions, communication deficits and repetitive behaviours. Strong evidence for a genetic basis has prompted the development of mouse models with targeted mutations in candidate genes for autism. As the diagnostic criteria for autism are behavioural, phenotyping these mouse models requires behavioural assays with high relevance to each category of the diagnostic symptoms. Behavioural neuroscientists are generating a comprehensive set of assays for social interaction, communication and repetitive behaviours to test hypotheses about the causes of austism. Robust phenotypes in mouse models hold great promise as translational tools for discovering effective treatments for components of autism spectrum disorders.
Deficits in social interaction are important early markers for autism and related neurodevelopmental disorders with strong genetic components. Standardized behavioral assays that measure the preference of mice for initiating social interactions with novel conspecifics would be of great value for mutant mouse models of autism. We developed a new procedure to assess sociability and the preference for social novelty in mice. To quantitate sociability, each mouse was scored on measures of exploration in a central habituated area, a side chamber containing an unfamiliar conspecific (stranger 1) in a wire cage, or an empty side chamber. In a secondary test, preference for social novelty was quantitated by presenting the test mouse with a choice between the first, now-familiar, conspecific (stranger 1) in one side chamber, and a second unfamiliar mouse (stranger 2) in the other side chamber. Parameters scored included time spent in each chamber and number of entries into the chambers. Five inbred strains of mice were tested, C57BL/6J, DBA/2J, FVB/NJ, A/J and B6129PF2/J hybrids. Four strains showed significant levels of sociability (spending more time in the chamber containing stranger 1 than in the empty chamber) and a preference for social novelty (spending more time in the chamber containing stranger 2 than in the chamber containing the now-familiar stranger 1). These social preferences were observed in both male and female mice, and in juveniles and adults. The exception was A/J, a strain that demonstrated a preference for the central chamber. Results are discussed in terms of potential applications of the new methods, and the proper controls for the interpretation of social behavior data, including assays for health, relevant sensory abilities and motor functions. This new standardized procedure to quantitate sociability and preference for social novelty in mice provides a method to assess tendencies for social avoidance in mouse models of autism.
A murine model of ataxia telangiectasia was created by disrupting the Atm locus via gene targeting. Mice homozygous for the disrupted Atm allele displayed growth retardation, neurologic dysfunction, male and female infertility secondary to the absence of mature gametes, defects in T lymphocyte maturation, and extreme sensitivity to gamma-irradiation. The majority of animals developed malignant thymic lymphomas between 2 and 4 months of age. Several chromosomal anomalies were detected in one of these tumors. Fibroblasts from these mice grew slowly and exhibited abnormal radiation-induced G1 checkpoint function. Atm-disrupted mice recapitulate the ataxia telangiectasia phenotype in humans, providing a mammalian model in which to study the pathophysiology of this pleiotropic disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.