Reduced miR-204 expression facilitates the excessive proliferation and apoptosis resistance of pulmonary artery smooth muscle cells characteristic of human pulmonary arterial hypertension.
Pulmonary arterial hypertension (PAH) is characterized by enhanced proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs). Because microRNAs have been recently implicated in the regulation of cell proliferation and apoptosis, we hypothesized that these regulatory molecules might be implicated in the etiology of PAH. In this study, we show that miR-204 expression in PASMCs is down-regulated in both human and rodent PAH. miR-204 down-regulation correlates with PAH severity and accounts for the proliferative and antiapoptotic phenotypes of PAH-PASMCs. STAT3 activation suppresses miR-204 expression, and miR-204 directly targets SHP2 expression, thereby SHP2 up-regulation, by miR-204 down-regulation, activates the Src kinase and nuclear factor of activated T cells (NFAT). STAT3 also directly induces NFATc2 expression. NFAT and SHP2 were needed to sustain PAH-PASMC proliferation and resistance to apoptosis. Finally, delivery of synthetic miR-204 to the lungs of animals with PAH significantly reduced disease severity. This study uncovers a new regulatory pathway involving miR-204 that is critical to the etiology of PAH and indicates that reestablishing miR-204 expression should be explored as a potential new therapy for this disease. role of miR-204 in the etiology of PAH. Interestingly, using in silico and microarray gene expression analyses, we observed that among the 461 predicted targets of miR-204 (TargetScan 5.1), only 165 were increased by artificial miR-204 inhibition in control human PASMCs (n = 2 patients; Fig. S1 C). In accordance with the pro-proliferative and antiapoptotic phenotypes seen in PAH, several Src-STAT3-and NFAT-related genes were identified (Fig. S1 C). miR-204 expression is decreased in human PAH and correlates with PAH severityTo investigate the expression pattern of miR-204 in normal and pulmonary hypertensive lungs, we examined miR-204 expression levels in (a) lung biopsies from 8 individuals with nonfamilial PAH compared with biopsies from 8 individuals without pulmonary hypertension, (b) lungs from 6 mice with hypoxia-induced pulmonary hypertension compared with 5 control littermates, and (c) lungs from 5 rats with monocrotaline (MCT)-induced pulmonary hypertension compared with 10 control littermates ( Fig. 1 A). We found decreased levels of miR-204 in human and rodent pulmonary hypertensive lung tissues compared with normotensive lung samples. To characterize whether down-regulated miR-204 levels were specific to the lung in rats with pulmonary hypertension, we compared organ-specific levels of miR-204 between normal and pulmonary hypertensive rats (Fig. 1 B). Even if we were able to detect minimal amounts of miR-204 in most organs, miR-204 levels were only down-regulated in the lung and PAs but not in the aorta, liver, heart, and kidney in rats 3 wk after MCT injection (pulmonary hypertensive rats) compared with non-pulmonary hypertensive rats (Fig. 1 B).To test whether miR-204 down-regulation correlated with disease progression, we studied humans, mice, a...
Background Pulmonary artery hypertension (PAH) is a proliferative disorder associated with enhanced pulmonary artery smooth muscle cell proliferation and suppressed apoptosis. The sustainability of this phenotype required the activation of a prosurvival transcription factor like signal transducers and activators of transcription-3 (STAT3) and nuclear factor of activated T cell (NFAT). Because these factors are implicated in several physiological processes, their inhibition in PAH patients could be associated with detrimental effects. Therefore, a better understanding of the mechanism accounting for their expression/activation in PAH pulmonary artery smooth muscle cells is of great therapeutic interest. Methods and Results Using multidisciplinary and translational approaches, we demonstrated that STAT3 activation in both human and experimental models of PAH accounts for the expression of both NFATc2 and the oncoprotein kinase Pim1, which trigger NFATc2 activation. Because Pim1 expression correlates with the severity of PAH in humans and is confined to the PAH pulmonary artery smooth muscle cell, Pim1 was identified as an attractive therapeutic target for PAH. Indeed, specific Pim1 inhibition in vitro decreases pulmonary artery smooth muscle cell proliferation and promotes apoptosis, all of which are sustained by NFATc2 inhibition. In vivo, tissue-specific inhibition of Pim1 by nebulized siRNA reverses monocrotaline-induced PAH in rats, whereas Pim1 knockout mice are resistant to PAH development. Conclusion We demonstrated for the first time that inhibition of the inappropriate activation of STAT3/Pim1 axis is a novel, specific, and attractive therapeutic strategy to reverse PAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.