Objective To develop a new evidence‐based, pharmacologic treatment guideline for rheumatoid arthritis (RA). Methods We conducted systematic reviews to synthesize the evidence for the benefits and harms of various treatment options. We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology to rate the quality of evidence. We employed a group consensus process to grade the strength of recommendations (either strong or conditional). A strong recommendation indicates that clinicians are certain that the benefits of an intervention far outweigh the harms (or vice versa). A conditional recommendation denotes uncertainty over the balance of benefits and harms and/or more significant variability in patient values and preferences. Results The guideline covers the use of traditional disease‐modifying antirheumatic drugs (DMARDs), biologic agents, tofacitinib, and glucocorticoids in early (<6 months) and established (≥6 months) RA. In addition, it provides recommendations on using a treat‐to‐target approach, tapering and discontinuing medications, and the use of biologic agents and DMARDs in patients with hepatitis, congestive heart failure, malignancy, and serious infections. The guideline addresses the use of vaccines in patients starting/receiving DMARDs or biologic agents, screening for tuberculosis in patients starting/receiving biologic agents or tofacitinib, and laboratory monitoring for traditional DMARDs. The guideline includes 74 recommendations: 23% are strong and 77% are conditional. Conclusion This RA guideline should serve as a tool for clinicians and patients (our two target audiences) for pharmacologic treatment decisions in commonly encountered clinical situations. These recommendations are not prescriptive, and the treatment decisions should be made by physicians and patients through a shared decision‐making process taking into account patients’ values, preferences, and comorbidities. These recommendations should not be used to limit or deny access to therapies.
Objective To develop a new evidence‐based, pharmacologic treatment guideline for rheumatoid arthritis (RA). Methods We conducted systematic reviews to synthesize the evidence for the benefits and harms of various treatment options. We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology to rate the quality of evidence. We employed a group consensus process to grade the strength of recommendations (either strong or conditional). A strong recommendation indicates that clinicians are certain that the benefits of an intervention far outweigh the harms (or vice versa). A conditional recommendation denotes uncertainty over the balance of benefits and harms and/or more significant variability in patient values and preferences. Results The guideline covers the use of traditional disease‐modifying antirheumatic drugs (DMARDs), biologic agents, tofacitinib, and glucocorticoids in early (<6 months) and established (≥6 months) RA. In addition, it provides recommendations on using a treat‐to‐target approach, tapering and discontinuing medications, and the use of biologic agents and DMARDs in patients with hepatitis, congestive heart failure, malignancy, and serious infections. The guideline addresses the use of vaccines in patients starting/receiving DMARDs or biologic agents, screening for tuberculosis in patients starting/receiving biologic agents or tofacitinib, and laboratory monitoring for traditional DMARDs. The guideline includes 74 recommendations: 23% are strong and 77% are conditional. Conclusion This RA guideline should serve as a tool for clinicians and patients (our two target audiences) for pharmacologic treatment decisions in commonly encountered clinical situations. These recommendations are not prescriptive, and the treatment decisions should be made by physicians and patients through a shared decision‐making process taking into account patients’ values, preferences, and comorbidities. These recommendations should not be used to limit or deny access to therapies.
Increased IFN-α signaling is a heritable risk factor for systemic lupus erythematosus (SLE). IFN induced with helicase C domain 1 (IFIH1) is a cytoplasmic dsRNA sensor that activates IFN-α pathway signaling. We studied the impact of the autoimmune-disease–associated IFIH1 rs1990760 (A946T) single nucleotide polymorphism upon IFN-α signaling in SLE patients in vivo. We studied 563 SLE patients (278 African-American, 179 European-American, and 106 Hispanic-American). Logistic regression models were used to detect genetic associations with autoantibody traits, and multiple linear regression was used to analyze IFN-α–induced gene expression in PBMCs in the context of serum IFN-α in the same blood sample. We found that the rs1990760 T allele was associated with anti-dsDNA Abs across all of the studied ancestral backgrounds (meta-analysis odds ratio = 1.34, p = 0.026). This allele also was associated with lower serum IFN-α levels in subjects who had anti-dsDNA Abs (p = 0.0026). When we studied simultaneous serum and PBMC samples from SLE patients, we found that the IFIH1 rs1990760 T allele was associated with increased IFN-induced gene expression in PBMCs in response to a given amount of serum IFN-α in anti-dsDNA–positive patients. This effect was independent of the STAT4 genotype, which modulates sensitivity to IFN-α in a similar way. Thus, the IFIH1 rs1990760 Tallele was associated with dsDNA Abs, and in patients with anti-dsDNA Abs this risk allele increased sensitivity to IFN-α signaling. These studies suggest a role for the IFIH1 risk allele in SLE in vivo.
Adipose tissue fibrosis development blocks adipocyte hypertrophy and favors ectopic lipid accumulation. Here, we show that adipose tissue fibrosis is associated with obesity and insulin resistance in humans and mice. Kinetic studies in C3H mice fed a high-fat diet show activation of macrophages and progression of fibrosis along with adipocyte metabolic dysfunction and death. Adipose tissue fibrosis is attenuated by macrophage depletion. Impairment of Toll-like receptor 4 signaling protects mice from obesity-induced fibrosis. The presence of a functional Toll-like receptor 4 on adipose tissue hematopoietic cells is necessary for the initiation of adipose tissue fibrosis. Continuous low-dose infusion of the Toll-like receptor 4 ligand, lipopolysaccharide, promotes adipose tissue fibrosis. Ex vivo, lipopolysaccharide-mediated induction of fibrosis is prevented by antibodies against the profibrotic factor TGFβ1. Together, these results indicate that obesity and endotoxemia favor the development of adipose tissue fibrosis, a condition associated with insulin resistance, through immune cell Toll-like receptor 4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.