The primary objectives of this paper are to determine the modal mineralogy of selected low albedo terrains of different ages ranging from Noachian to Amazonian exposed on the surface of Mars. This analysis is conducted using the spectral modeling of the Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) reflectance data. Results from this work are consistent with the major results of previous spectroscopic studies: plagioclase (40-60% in volume) and high calcium pyroxene (20-40%, HCP) are the dominant minerals of the most regions. Low calcium pyroxene (10-15%, LCP) and minor amounts of olivine are also present. The oldest terrains are characterized by the largest amount of LCP and the lowest concentration of plagioclase. These overall compositions are consistent with two-pyroxene basalts. The particle sizes are in the range of a few hundreds of micrometers, which is in good agreement with the thermal inertia of the martian low albedo regions. In the region around the Nili Fossae, localized concentrations of olivine up to 40% with millimeter particle size similar to picritic basalts observed in situ by the Spirit rover in the Gusev crater are inferred. Chemical compositions are calculated for the first time from OMEGA spectra. They are quite consistent with Gusev rocks and shergottite compositions but they appear to be significantly SiO 2 -poorer than Thermal Emission Spectrometer data. A decreasing low calcium pyroxene abundance with the decreasing age of the low albedo regions is reported. This may be indicative of decreasing degree of partial melting as thermal flux decreases with time. We propose that the ancient Noachian-aged, LCP-rich terrains could have been formed from H 2 O-bearing melts. Then, dry, basaltic volcanism occurred leading to decreasing LCP abundance with time due to decreasing degree of partial melting. The olivine-bearing material modeled in Nili Fossae resembles the composition of ALH77005 and Chassigny meteorites consistent with prior studies. Implications on the formation of the basaltic Shergottites are discussed.
The origin, formation and evolution of volcanic sands are less well known than the formation of the much more common quartz-rich sand sheets. Combining active volcanism and a cold climate, Iceland is covered for about 21% of its surface by sandy areas. The sands were analyzed in detail at two sites and results reveal their diverse origins. The first site is Dyngjusandur, located north of Vatnajökull, and the second site is the Lambahraun area, located south of Langjökull. At both sites, the sand origin is determined from field observations (wind directions from ventifacts), chemical and mineralogical analyses of rocks and sands. At Dyngjusandur, the sand is dominated by glass grains, a situation typical of sand plains in Iceland. Hyaloclastite ridges presently buried beneath Vatnajökull are the dominant source of the sand, and only large size plagioclase crystals (0.5cm) in sands seem to be derived from the lava flows. Hyaloclastite ridges were crushed by glaciers and mechanically eroded sediments were washed out by melt-water onto flood plains. The sand chemical composition is spatially homogeneous and similar to the average composition of neighboring sub-aerial lava flows, reflecting efficient mixing of distinct sources below the glacier. The presence of sand north of Dyngjujökull can be taken as a way to explore the average chemical composition of non-exposed volcanic material beneath the glacier. In the case of Lambahraun, prevailing winds indicate several potential sources of sand at the north of the sand sheet. Comparison of chemical and mineralogical analyses of sands and rock samples helped to refine the exact origin. In contrast with the first site, the sand is dominated by crystals and is chemically consistent with a mixture of material derived from the lava flows of Eldborgir and Skersli shield volcanoes. Analysis of the contact between the lava flows and the glacier reveals that basaltic sand grains formed as the result of recent advances of the glacier abrading the rocks. The direct interaction of glacial and fluvio-glacial activity with basaltic plains appears to be necessary to produce a large amount of sands in a relatively short period of time (<4000years). This site appears to be an excellent natural laboratory for further studies concerning the sand evolution and physical sorting processes in basaltic material, which have important implications for understanding aeolian processes on Mars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.