International audienceMassive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Ban
Strong gravitational lenses are now being routinely discovered in wide-field surveys at (sub-)millimeter wavelengths. We present Submillimeter Array (SMA) high-spatial resolution imaging and Gemini-South and Multiple Mirror Telescope optical spectroscopy of strong lens candidates discovered in the two widest extragalactic surveys conducted by the Herschel Space Observatory: the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). From a sample of 30 Herschel sources with S 500 > 100 mJy, 21 are strongly lensed (i.e., multiply imaged), 4 are moderately lensed (i.e., singly imaged), and the remainder require additional data to determine their lensing status. We apply a visibility-plane lens modeling technique to the SMA data to recover information about the masses of the lenses as well as the intrinsic (i.e., unlensed) sizes (r half ) and far-infrared luminosities (L FIR ) of the lensed submillimeter galaxies (SMGs). The sample of lenses comprises primarily isolated massive galaxies, but includes some groups and clusters as well. Several of the lenses are located at z lens > 0.7, a redshift regime that is inaccessible to lens searches based on Sloan Digital Sky Survey spectroscopy. The lensed SMGs are amplified by factors that are significantly below statistical model predictions given the 500 µm flux densities of our sample. We speculate that this may reflect a deficiency in our understanding of the intrinsic sizes and luminosities of the brightest SMGs. The lensed SMGs span nearly one decade in L FIR (median L FIR = 7.9 × 10 12 L ) and two decades in FIR luminosity surface density (median Σ FIR = 6.0 × 10 11 L kpc −2 ). The strong lenses in this sample and others identified via (sub-)mm surveys will provide a wealth of information regarding the astrophysics of galaxy formation and evolution over a wide range in redshift.
We present a list of 13 candidate gravitationally lensed submillimeter galaxies (SMGs) from 95 deg 2 of the Herschel Multi-tiered Extragalactic Survey, a surface density of 0.14 ± 0.04 deg −2. The selected sources have 500 μm flux densities (S 500) greater than 100 mJy. Gravitational lensing is confirmed by follow-up observations in 9 of the 13 systems (70%), and the lensing status of the four remaining sources is undetermined. We also present a supplementary sample of 29 (0.31 ± 0.06 deg −2) gravitationally lensed SMG candidates with S 500 = 80-100 mJy, which are expected to contain a higher fraction of interlopers than the primary candidates. The number counts of the candidate lensed galaxies are consistent with a simple statistical model of the lensing rate, which uses a foreground matter distribution, the intrinsic SMG number counts, and an assumed SMG redshift distribution. The model predicts that 32%-74% of our S 500 100 mJy candidates are strongly gravitationally lensed (μ 2), with the brightest sources being the most robust; this is consistent with the observational data. Our statistical model also 1
Panchromatic observations of the best candidate HyLIRG from the widest Herschel extragalactic imaging survey have led to the discovery of at least four intrinsically luminous z = 2.41 galaxies across a ≈100-kpc region -a cluster of starbursting proto-ellipticals. Via sub-arcsecond interferometric imaging we have measured accurate gas and star-formation surface densities. The two brightest galaxies span ∼3 kpc FWHM in submm/radio continuum and CO J = 4−3, and double that in CO J = 1−0. The broad CO line is due partly to the multitude of constituent galaxies and partly to large rotational velocities in two counter-rotating gas disks -a scenario predicted to lead to the most intense starbursts, which will therefore come in pairs. The disks have M dyn of several ×10 11 M ⊙ , and gas fractions of ∼ 40%. Velocity dispersions are modest so the disks are unstable, potentially on scales commensurate with their radii: these galaxies are undergoing extreme bursts of star formation, not confined to their nuclei, at close to the Eddington limit. Their specific star-formation rates place them > ∼ 5× above the main sequence, which supposedly comprises large gas disks like these. Their high star-formation efficiencies are difficult to reconcile with a simple volumetric star-formation law. N-body and dark matter simulations suggest this system is the progenitor of a B(inary)-type ≈ 10 14.6 -M ⊙ cluster.
The Herschel Multi-tiered Extragalactic Survey (HerMES) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the limited spatial resolution of Herschel. We present 870 μm 0 45 resolution imaging obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) of a sample of 29 HerMES DSFGs that have far-infrared (FIR) flux densities that lie between the brightest of sources found by Herschel and fainter DSFGs found via groundbased surveys in the submillimeter region. The ALMA imaging reveals that these DSFGs comprise a total of 62 sources (down to the 5s point-source sensitivity limit in our ALMA sample; 0.2 mJy s » ). Optical or nearinfrared imaging indicates that 36 of the ALMA sources experience a significant flux boost from gravitational lensing ( 1.1 m > ), but only six are strongly lensed and show multiple images. We introduce and make use of UVMCMCFIT, a general-purpose and publicly available Markov chain Monte Carlo visibility-plane analysis tool to analyze the source properties. Combined with our previous work on brighter Herschel sources, the lens models presented here tentatively favor intrinsic number counts for DSFGs with a break near 8 mJy at 880 m m and a steep fall-off at higher flux densities. Nearly 70% of the Herschel sources break down into multiple ALMA counterparts, consistent with previous research indicating that the multiplicity rate is high in bright sources discovered in singledish submillimeter or FIR surveys. The ALMA counterparts to our Herschel targets are located significantly closer to each other than ALMA counterparts to sources found in the LABOCA ECDFS Submillimeter Survey. Theoretical models underpredict the excess number of sources with small separations seen in our ALMA sample. The high multiplicity rate and small projected separations between sources seen in our sample argue in favor of interactions and mergers plausibly driving both the prodigious emission from the brightest DSFGs as well as the sharp downturn above S 8 mJy 880 = .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.