Epoxy composites filled with high surface area-carbon fillers: Optimization of electromagnetic shielding, electrical, mechanical, and thermal properties
Nek2 is a mitotic kinase whose activity varies during the cell cycle. It is well known that Nek2 is involved in centrosome splitting, and a number of studies have indicated that Nek2 is crucial for maintaining the integrity of centrosomal structure and microtubule nucleation activity. In the present study, we report that NIP2, previously identified as centrobin, is a novel substrate of Nek2. NIP2 was daughter-centriole-specific, but was also found in association with a stable microtubule network of cytoplasm. Ectopic NIP2 formed aggregates but was dissolved by Nek2 into small pieces and eventually associated with microtubules. Knockdown of NIP2 showed significant reduction of microtubule organizing activity, cell shrinkage, defects in spindle assembly and abnormal nuclear morphology. Based on our results, we propose that NIP2 has a role in stabilizing the microtubule structure. Phosphorylation may be crucial for mobilization of the protein to a new microtubule and stabilizing it.
Chitinase 3-like 1 (CHI3L1) is a secreted glycoprotein that has pleiotropic activity in aggressive cancers. In our study, we examined the expression and function of CHI3L1 in glioma cells. CHI3L1 was highly expressed in human glioma tissue, whereas its expression in normal brain tissue was very low. CHI3L1 suppression by shRNA reduced glioma cell invasion, anchorage-independent growth and increased cell death triggered by several anticancer drugs, including cisplatin, etoposide and doxorubicin, whereas CHI3L1 overexpression had the opposite effect in glioma cells. Because the invasive nature of glioma cells plays a critical role in the high morbidity of glioma, we have further defined the role of CHI3L1 in the process of glioma invasion. Downregulation of CHI3L1 results in decreased cell-matrix adhesion and causes a marked increase in stress fiber formation and cell size with fewer cellular processes. Furthermore, the expression and activity of matrix metalloproteinase-2 was also decreased in glioma cells in which CHI3L1 was knocked down. Taken together, these results suggest that CHI3L1 plays an important role in the regulation of malignant transformation and local invasiveness in gliomas. Thus, targeting the CHI3L1 molecule may be a potential therapeutic molecular target for gliomas.
The role of IKCa in cardiac repolarization remains controversial and varies across species. The relevance of the current as a therapeutic target is therefore undefined. We examined the cellular electrophysiologic effects of IKCa blockade in controls, chronic heart failure (HF) and HF with sustained atrial fibrillation. We used perforated patch action potential recordings to maintain intrinsic calcium cycling. The IKCa blocker (apamin 100 nM) was used to examine the role of the current in atrial and ventricular myocytes. A canine tachypacing induced model of HF (1 and 4 months, n = 5 per group) was used, and compared to a group of 4 month HF with 6 weeks of superimposed atrial fibrillation (n = 7). A group of age-matched canine controls were used (n = 8). Human atrial and ventricular myocytes were isolated from explanted end-stage failing hearts which were obtained from transplant recipients, and studied in parallel. Atrial myocyte action potentials were unchanged by IKCa blockade in all of the groups studied. IKCa blockade did not affect ventricular myocyte repolarization in controls. HF caused prolongation of ventricular myocyte action potential repolarization. IKCa blockade caused further prolongation of ventricular repolarization in HF and also caused repolarization instability and early afterdepolarizations. SK2 and SK3 expression in the atria and SK3 in the ventricle were increased in canine heart failure. We conclude that during HF, IKCa blockade in ventricular myocytes results in cellular arrhythmias. Furthermore, our data suggest an important role for IKCa in the maintenance of ventricular repolarization stability during chronic heart failure. Our findings suggest that novel antiarrhythmic therapies should have safety and efficacy evaluated in both atria and ventricles.
With cobalt oxides as promising catalysts for hydrogen generation, 2D network polymer-supported cobalt-oxide catalysts with good crystallinity are highly anticipated to enhance catalytic performance. Here we report the fabrication of a 2D nitrogenated network polymerencapsulated cobalt-oxide (Co@C 2 N) catalyst via an in situ solvothermal synthesis. Co@C 2 N exhibits outstanding catalytic activities for hydrogen (H 2 ) generation from the hydrolysis of alkaline sodium borohydride (NaBH 4 ) solutions. The rate of maximum hydrogen generation is comparable to the best reported values for catalysts containing other noble metals in alkaline solutions. Furthermore, Co@C 2 N can also catalyze the in situ reduction of a nitro group into an amino group (4-nitrophenol to 4-aminophenol) in the presence of NaBH 4 . The origin of high catalytic activity with enhanced stability could be due to the strong interaction between the cobalt-oxide nanoparticle and the C 2 N framework, which contains a large portion of nitrogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.