Optogenetics is a powerful technique that allows target-specific spatiotemporal manipulation of neuronal activity for dissection of neural circuits and therapeutic interventions. Recent advances in wireless optogenetics technologies have enabled investigation of brain circuits in more natural conditions by releasing animals from tethered optical fibers. However, current wireless implants, which are largely based on battery-powered or battery-free designs, still limit the full potential of in vivo optogenetics in freely moving animals by requiring intermittent battery replacement or a special, bulky wireless power transfer system for continuous device operation, respectively. To address these limitations, here we present a wirelessly rechargeable, fully implantable, soft optoelectronic system that can be remotely and selectively controlled using a smartphone. Combining advantageous features of both battery-powered and battery-free designs, this device system enables seamless full implantation into animals, reliable ubiquitous operation, and intervention-free wireless charging, all of which are desired for chronic in vivo optogenetics. Successful demonstration of the unique capabilities of this device in freely behaving rats forecasts its broad and practical utilities in various neuroscience research and clinical applications.
During evolution, herpesviruses have developed numerous, and often very ingenious, strategies to counteract efficient host immunity. Specifically, Kaposi's sarcoma-associated herpesvirus (KSHV) eludes host immunity by undergoing a dormant stage, called latency wherein it expresses a minimal number of viral proteins to evade host immune activation. Here, we show that during latency, KSHV hijacks the complement pathway to promote cell survival. We detected strong deposition of complement membrane attack complex C5b-9 and the complement component C3 activated product C3b on Kaposi's sarcoma spindle tumor cells, and on human endothelial cells latently infected by KSHV, TIME-KSHV and TIVE-LTC, but not on their respective uninfected control cells, TIME and TIVE. We further showed that complement activation in latently KSHV-infected cells was mediated by the alternative complement pathway through down-regulation of cell surface complement regulatory proteins CD55 and CD59. Interestingly, complement activation caused minimal cell death but promoted the survival of latently KSHV-infected cells grown in medium depleted of growth factors. We found that complement activation increased STAT3 tyrosine phosphorylation (Y705) of KSHV-infected cells, which was required for the enhanced cell survival. Furthermore, overexpression of either CD55 or CD59 in latently KSHV-infected cells was sufficient to inhibit complement activation, prevent STAT3 Y705 phosphorylation and abolish the enhanced survival of cells cultured in growth factor-depleted condition. Together, these results demonstrate a novel mechanism by which an oncogenic virus subverts and exploits the host innate immune system to promote viral persistent infection.
BackgroundMethylated resveratrol analogs show similar biological activities that are comparable with those of the resveratrol. However, the methylated resveratrol analogs exhibit better bioavailability as they are more easily transported into the cell and more resistant to degradation. Although these compounds are widely used in human health care and in industrial materials, at present they are mainly obtained by extraction from raw plant sources. Accordingly their production can suffer from a variety of economic problems, including low levels of productivity and/or heterogeneous quality. On this backdrop, large-scale production of plant metabolites via microbial approaches is a promising alternative to chemical synthesis and extraction from plant sources.ResultsAn Escherichia coli system containing an artificial biosynthetic pathway that produces methylated resveratrol analogues, such as pinostilbene (3,4’-dihydroxy-5-methoxystilbene), 3,5-dihydroxy-4’-methoxystilbene, 3,4’-dimethoxy-5-hydroxystilbene, and 3,5,4’-trimethoxystilbene, from simple carbon sources is developed. These artificial biosynthetic pathways contain a series of codon-optimized O-methyltransferase genes from sorghum in addition to the resveratrol biosynthetic genes. The E. coli cells that harbor pET-opTLO1S or pET-opTLO3S produce the one-methyl resveratrol analogues of 3,5-dihydroxy-4’-methoxystilbene and pinostilbene, respectively. Furthermore, the E. coli cells that harbor pET-opTLO13S produce 3,5-dihydroxy-4’-methoxystilbene, bis-methyl resveratrol (3,4’-dimethoxy-5-hydroxystilbene), and tri-methyl resveratrol (3,5,4’-trimethoxystilbene).ConclusionsOur strategy demonstrates the first harness microorganisms for de novo synthesis of methylated resveratrol analogs used a single vector system joined with resveratrol biosynthetic genes and sorghum two resveratrol O-methyltransferase genes. Thus, this is also the first report on the production of the methylated resveratrol compounds bis-methyl and tri-methyl resveratrol (3,4’-dimethoxy-5-hydroxystilbene and 3,5,4’-trimethoxystilbene) in the E. coli culture. Thus, the production of the methylated resveratrol compounds was performed on the simple E. coli medium without precursor feeding in the culture.
Indoleamine 2,3-dioxygenase 1 (IDO1), a tryptophan catabolising enzyme, is known as a tumour cell survival factor that causes immune escape in several types of cancer. Flavonoids of Sophora flavescens have a variety of biological benefits for humans; however, cancer immunotherapy effect has not been fully investigated. The flavonoids (1–6) isolated from S. flavescens showed IDO1 inhibitory activities (IC 50 4.3 – 31.4 µM). The representative flavonoids ( 4–6 ) of S. flavescens were determined to be non-competitive inhibitors of IDO1 by kinetic analyses. Their binding affinity to IDO1 was confirmed using thermal stability and surface plasmon resonance (SPR) assays. The molecular docking analysis and mutagenesis assay revealed the structural details of the interactions between the flavonoids (1–6) and IDO1. These results suggest that the flavonoids (1–6) of S. flavescens , especially kushenol E ( 6 ), as IDO1 inhibitors might be useful in the development of immunotherapeutic agents against cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.