Due to its superiority such as low access latency, low energy consumption, light weight, and shock resistance, the success of flash memory as a storage alternative for mobile computing devices has been steadily expanded into personal computer and enterprise server markets with ever increasing capacity of its storage. However, since flash memory exhibits poor performance for small-to-moderate sized writes requested in a random order, existing database systems may not be able to take full advantage of flash memory without elaborate flash-aware data structures and algorithms. The objective of this work is to understand the applicability and potential impact that flash memory SSD (Solid State Drive) has for certain type of storage spaces of a database server where sequential writes and random reads are prevalent. We show empirically that up to more than an order of magnitude improvement can be achieved in transaction processing by replacing magnetic disk with flash memory SSD for transaction log, rollback segments, and temporary table spaces.
Incidence and properties of Bacillus cereus strains naturally present in cereals were evaluated by phenotypic characterization, antibiotic susceptibility testing, and pulsed-field gel electrophoresis. Of 293 cereal samples tested, 73 (25%) contained B. cereus strains. Incidence of B. cereus isolates varied with respect to sample; they were found in 15 (37%) of 83 brown rice samples, 23 (37%) of 63 glutinous rice samples, 16 (21%) of 76 barley samples, and 19 (27%) of 71 Job's tears samples. All B. cereus isolates from cereals were positive for diarrheal toxin genes. The isolates were susceptible to most of the antibiotics tested, but they were highly resistant to ampicillin, cefepime, oxacillin, and penicillin. Of the genes assayed by the PCR technique, a high frequency of nheA (99%) and hblDC (84%) was found in the genomic DNA of cereal-associated isolates, whereas cytK was less common (55%). From the strains carrying the hblDC genes, 93% produced enterotoxin HBL. B. cereus isolates did not have significant genetic homology. The genetic diversity and toxic potential differ among the strains isolated from cereals. These results provide important information on toxin gene profiles of cereal-associated B. cereus for population studies.
COMMUNICATION (1 of 7)© 2017 WILEY-VCH Verlag GmbH & Co. KGaA Polymeric microstructures containing biological materials have attracted attention for various biomedical applications, such as scaffolds for cell proliferation and drug-eluting reservoirs for controlled release. [1][2][3][4][5][6] Recently, dissolving microneedles (DMNs), which are implantable microscale-polymeric needles that release biopharmaceutics from their dissolving polymer matrix into the skin, have been investigated as an alternative biomedical delivery system to hypodermic injection owing to their minimal invasiveness and reduced side effects compared with traditional hypodermic injection. [7][8][9] Therefore, selfadministrable DMNs are applied to deliver biopharmaceutics, Polymeric microstructures encapsulating biopharmaceutics must be fabricated in a controlled environment to preserve the biological activity. There is increasing demand for simple methods designed to preserve the biological activity by utilizing the natural properties of polymers. Here, the paper shows that centrifugal lithography (CL) can be used for the fabrication of such microstructures in a single centrifugation, by engineering the self-shaping properties of hyaluronic acid (HA). In this method, HA drops are self-shaped into hourglass-microstructures to produce two dissolving microneedles (DMN), which facilitate transdermal delivery via implantation on the skin. In addition, tuberculin purified protein derivatives are encapsulated into HA DMNs under refrigerated conditions (4 °C) during CL. Therefore, the tuberculin skin test (TST) with the DMNs indicates minimal damage, as opposed to the case of TST with traditional hypodermic needles. These findings on the fabrication of polymeric microstructures with biopharmaceutics may trigger the development of various biomedical devices and therapies.
Recently, deep neural network-powered quantitative susceptibility mapping (QSM), QSMnet, successfully performed ill-conditioned dipole inversion in QSM and generated highquality susceptibility maps. In this paper, the network, which was trained by healthy volunteer data, is evaluated for hemorrhagic lesions that have substantially higher susceptibility than healthy tissues in order to test "linearity" of QSMnet for susceptibility. The results show that QSMnet underestimates susceptibility in hemorrhagic lesions, revealing degraded linearity of the network for the untrained susceptibility range. To overcome this limitation, a data augmentation method is proposed to generalize the network for a wider range of susceptibility.The newly trained network, which is referred to as QSMnet + , is assessed in computer-simulated lesions with an extended susceptibility range (-1.4 ppm to +1.4 ppm) and also in twelve hemorrhagic patients. The simulation results demonstrate improved linearity of QSMnet + over QSMnet (root mean square error of QSMnet + : 0.04 ppm vs. QSMnet: 0.36 ppm). When applied to patient data, QSMnet + maps show less noticeable artifacts to those of conventional QSM maps. Moreover, the susceptibility values of QSMnet + in hemorrhagic lesions are better matched to those of the conventional QSM method than those of QSMnet when analyzed using linear regression (QSMnet + : slope = 1.05, intercept = -0.03, R 2 = 0.93; QSMnet: slope = 0.68, intercept = 0.06, R 2 = 0.86), consolidating improved linearity in QSMnet + . This study demonstrates the importance of the trained data range in deep neural network-powered parametric mapping and suggests the data augmentation approach for generalization of network.The new network can be applicable for a wide range of susceptibility quantification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.