Ultra-definition, large-area displays with three-dimensional visual effects represent megatrend in the current/future display industry. On the hardware level, such a “dream” display requires faster pixel switching and higher driving current, which in turn necessitate thin-film transistors (TFTs) with high mobility. Amorphous oxide semiconductors (AOS) such as In-Ga-Zn-O are poised to enable such TFTs, but the trade-off between device performance and stability under illumination critically limits their usability, which is related to the hampered electron-hole recombination caused by the oxygen vacancies. Here we have improved the illumination stability by substituting oxygen with nitrogen in ZnO, which may deactivate oxygen vacancies by raising valence bands above the defect levels. Indeed, the stability under illumination and electrical bias is superior to that of previous AOS-based TFTs. By achieving both mobility and stability, it is highly expected that the present ZnON TFTs will be extensively deployed in next-generation flat-panel displays.
Driven by a paradigm shift from conventional liquid-based systems to all-solid-state batteries (ASSBs), the chemo-mechanical behavior of the solid–solid interface is of growing importance for understanding the intricate interfacial phenomena of ASSBs.
BackgroundTo develop and compare delta-radiomics signatures from 2- (2D) and 3-dimensional (3D) features that predict treatment outcomes following preoperative chemoradiotherapy (CCRT) and surgery for locally advanced rectal cancer.MethodsIn total, 101 patients (training cohort, n = 67; validation cohort, n = 34) with locally advanced rectal adenocarcinoma between 2008 and 2015 were included. We extracted 55 features from T2-weighted magnetic resonance imaging (MRI) scans. Delta-radiomics feature was defined as the difference in radiomics feature before and after CCRT. Signatures were developed to predict local recurrence (LR), distant metastasis (DM), and disease-free survival (DFS) from 2D and 3D features. The least absolute shrinkage and selection operator regression was used to select features and build signatures. The delta-radiomics signatures and clinical factors were integrated into Cox regression analysis to determine if the signatures were independent prognostic factors.ResultsThe radiomics signatures for LR, DM, and DFS were developed and validated using both 2D and 3D features. Outcomes were significantly different in the low- and high-risk patients dichotomized by optimal cutoff in both the training and validation cohorts. In multivariate analysis, the signatures were independent prognostic factors even when considering the clinical parameters. There were no significant differences in C-index from 2D vs. 3D signatures.ConclusionsThis is the first study to develop delta-radiomics signatures for rectal cancer. The signatures successfully predicted the outcomes and were independent prognostic factors. External validation is warranted to ensure their performance.Electronic supplementary materialThe online version of this article (10.1186/s13014-019-1246-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.