The aim of the present research was to evaluate the impact of coating layers on release profile from enteric coated dosage forms. Capsules were coated with Eudragit FS 30D using dipping method. The drug profile was evaluated in both phosphate buffer and Hank's solutions. Utilization X-ray imaging, gastrointestinal transmission of enteric coated capsules was traced in rats. According to the results, no release of the drug was found at pH 1.2, and the extent of release drug in pH 6.8 medium was decreased by adding the coating layers. The results indicated single-layer coated capsules in phosphate buffer were significantly higher than that in Hank's solution. However, no significant difference was observed from capsules with three coating layers in two different dissolution media. X-ray imaging showed that enteric coated capsules were intact in the stomach and in the small intestine, while disintegrated in the colon.
The aim of the present research was to establish primary characteristics of electron beams for a Varian 2100C/D linear accelerator with recently developed PRIMO Monte Carlo software and to verify relations between electron energy and dose distribution. To maintain conformity of simulated and measured dose curves within 1%/1mm, mean energy, Full Width at Half Maximum (FWHM) of energy and focal spot FWHM of initial beam were changed iteratively. Mean and most probable energies were extracted from validated phase spaces and compared with related empirical equation results. To explain the importance of correct estimation of primary energy on a clinical case, computed tomography images of a thorax phantom were imported in PRIMO. Dose distributions and dose volume histogram (DVH) curves were compared between validated and artificial cases with overestimated energy. Initial mean energies were obtained of 6.68, 9.73, 13.2 and 16.4 MeV for 6, 9, 12 and 15 nominal energies, respectively. Energy FWHM reduced with increase in energy. Three mm focal spot FWHM for 9 MeV and 4 mm for other energies made proper matches of simulated and measured profiles. In addition, the maximum difference of calculated mean electrons energy at the phantom surface with empirical equation was 2.2 percent. Finally, clear differences in DVH curves of validated and artificial energy were observed as heterogeneity indexes were 0.15 for 7.21 MeV and 0.25 for 6.68 MeV. The Monte Carlo model presented in PRIMO for Varian 2100 CD was precisely validated. IAEA polynomial equations estimated mean energy more accurately than a known linear one. Small displacement of R50 changed DVH curves and homogeneity indexes. PRIMO is a user-friendly software which has suitable capabilities to calculate dose distribution in water phantoms or computerized tomographic volumes accurately.
BackgroundThis study aimed to evaluate the radiation dose received by premature neonates using diagnostic radiographies.MethodsThis cross-sectional study was conducted on 116 premature neonates with gestational age from 25 to 37 weeks; with the diagnosis of neonatal respiratory distress syndrome (NRDS) and tachypnea, they were admitted to a neonatal intensive care unit (NICU) at Ahvaz Imam Khomeini Hospital in 2015. For assessing the dose received, the model GR-200 thermoluminescent dosimeter (TLD) was used. For each premature neonate under radiation, three TLDs separately (one for each) were placed on surfaces of Ch1, T1, and G1 (chest, thyroid, and gonad of first newborn, respectively). Moreover, for the adjacent neonate at a distance of 60 - 100 cm, two TLDs were laid in the surfaces of T2 and G2 (thyroid and gonad of second newborn, respectively). The dose received by TLDs for any baby and the adjacent neonate under the entrance surface dose (ESD) was estimated.ResultsThe mean of neonates’ weight under study was 1,950.78 ± 484.9 g. During the hospitalization period, minimum one and maximum three radiographies were done for any premature neonate. The doses received in the premature neonates to Ch1, T1 and G1 were 0.08 ± 0.01, 0.06 ± 0.01, and 0.05 ± 0.01 mSv, respectively and for adjacent infants for T2 and G2 were 0.003 ± 0.001 and 0.002 ± 0.0009 mSv, respectively.ConclusionsIn the study, radiation dose received by organs at risk of premature neonates was lower than the international criteria and standards, therefore, also due to the lack of radiation damage threshold, to limit collimator, and the use of the proper filtration, kilovoltage and time during radiography of premature neonates are recommended.
Discovery of X-rays in 1895 by Wilhelm Conrad Rontgen opened new horizons in medical sciences. However, the challenging nature of ionizing radiation has highlighted the importance of protective measures. The highly penetrating nature of X-rays and differences in the sensitivity of body tissues to this type of radiation are responsible for the biological effects in humans. To limit the harmful tissue reactions and the stochastic effects of X-rays, the International Commission on Radiological Protection (ICRP) has recommended two principles of justification and optimization (1) . Since radiological imaging has become one of the main diagnostic methods to determine the cause of diseases, some concerns have been raised regarding full adherence to protective and patient dose principles (2) . Accordingly, the ICRP
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.