S28 Introduction S30 Summary of recommendation statements and practice points S88 Chapter 1: General principles for the management of glomerular disease S115 Chapter 2: Immunoglobulin A nephropathy (IgAN)/immunoglobulin A vasculitis (IgAV) S128 Chapter 3: Membranous nephropathy S140 Chapter 4: Nephrotic syndrome in children S153 Chapter 5: Minimal change disease (MCD) in adults S161 Chapter 6: Focal segmental glomerulosclerosis (FSGS) in adults S172 Chapter 7: Infection-related glomerulonephritis S187 Chapter 8: Immunoglobulin-and complement-mediated glomerular diseases with a membranoproliferative glomerulonephritis (MPGN) pattern of injury S193 Chapter 9: Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis S207 Chapter 10: Lupus nephritis S231 Chapter 11: Anti-glomerular basement membrane (Anti-GBM) antibody glomerulonephritis S235 Methods for guideline development S243 Biographic and disclosure information S254 Acknowledgments S256 ReferencesThis guideline is published as a supplement supported by KDIGO. The development and publication of this guideline are strictly funded by KDIGO, and neither KDIGO nor its guideline Work Group members sought or received monies or fees from corporate or commercial entities in connection with this work. The opinions or views expressed in this professional education supplement are those of the authors and do not necessarily reflect the opinions or recommendations of the International Society of Nephrology or Elsevier. Dosages, indications, and methods of use for products that are referred to in the supplement by the authors may reflect their clinical experience or may be derived from the professional literature or other clinical sources. Because of the differences between in vitro and in vivo systems and between laboratory animal models and clinical data in humans, in vitro and animal data may not necessarily correlate with clinical results.
Hypertension affects one billion people and is a principal reversible risk factor for cardiovascular disease. A rare Mendelian syndrome, pseudohypoaldosteronism type II (PHAII), featuring hypertension, hyperkalemia, and metabolic acidosis, has revealed previously unrecognized physiology orchestrating the balance between renal salt reabsorption versus K+ and H+ excretion1. We used exome sequencing to identify mutations in Kelch-like 3 (KLHL3) or Cullin 3 (CUL3) in 41 PHAII kindreds. KLHL3 mutations are either recessive or dominant, while CUL3 mutations are dominant and predominantly de novo. CUL3 and BTB-Kelch proteins such as KLHL3 are components of Cullin/RING E3 ligase complexes (CRLs) that ubiquitinate substrates bound to Kelch propeller domains2–8. Dominant KLHL3 mutations are clustered in short segments within the Kelch propeller and BTB domains implicated in substrate9 and Cullin5 binding, respectively. Diverse CUL3 mutations all result in skipping of exon 9, producing an in-frame deletion. Because dominant KLHL3 and CUL3 mutations both phenocopy recessive loss-of-function KLHL3 mutations, they may abrogate ubiquitination of KLHL3 substrates. Disease features are reversed by thiazide diuretics, which inhibit the Na-Cl cotransporter (NCC) in the distal nephron of the kidney; KLHL3 and CUL3 are expressed in this location, suggesting a mechanistic link between KLHL3/CUL3 mutations, increased Na-Cl reabsorption, and disease pathogenesis. These findings demonstrate the utility of exome sequencing in disease gene identification despite combined complexities of locus heterogeneity, mixed models of transmission, and frequent de novo mutation, and establish a fundamental role for KLHL3/CUL3 in blood pressure, K+, and pH homeostasis.
BACKGROUND Exome sequencing is emerging as a first-line diagnostic method in some clinical disciplines, but its usefulness has yet to be examined for most constitutional disorders in adults, including chronic kidney disease, which affects more than 1 in 10 persons globally. METHODS We conducted exome sequencing and diagnostic analysis in two cohorts totaling 3315 patients with chronic kidney disease. We assessed the diagnostic yield and, among the patients for whom detailed clinical data were available, the clinical implications of diagnostic and other medically relevant findings. RESULTS In all, 3037 patients (91.6%) were over 21 years of age, and 1179 (35.6%) were of self-identified non-European ancestry. We detected diagnostic variants in 307 of the 3315 patients (9.3%), encompassing 66 different monogenic disorders. Of the disorders detected, 39 (59%) were found in only a single patient. Diagnostic variants were detected across all clinically defined categories, including congenital or cystic renal disease (127 of 531 patients [23.9%]) and nephropathy of unknown origin (48 of 281 patients [17.1%]). Of the 2187 patients assessed, 34 (1.6%) had genetic findings for medically actionable disorders that, although unrelated to their nephropathy, would also lead to subspecialty referral and inform renal management. CONCLUSIONS Exome sequencing in a combined cohort of more than 3000 patients with chronic kidney disease yielded a genetic diagnosis in just under 10% of cases. (Funded by the National Institutes of Health and others.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.