We have ablated the cellular RNA degradation machinery in differentiated B cells and pluripotent embryonic stem (ES) cells by conditional mutagenesis of core (Exosc3) and nuclear RNase (Exosc10) components of RNA exosome and identified a vast number of long non-coding RNAs (lncRNAs) and enhancer RNAs (eRNAs) with emergent functionality. Unexpectedly, eRNA-expressing regions accumulate R-loop structures upon RNA exosome ablation, thus demonstrating the role of RNA exosome in resolving deleterious DNA/RNA hybrids arising from active enhancers. We have uncovered a distal divergent eRNA-expressing element (lncRNA-CSR) engaged in long-range DNA interactions and regulating IgH 3′ regulatory region super-enhancer function. CRISPR-Cas9 mediated ablation of lncRNA-CSR transcription decreases its chromosomal looping-mediated association with the IgH 3′regulatory region super-enhancer and leads to decreased class switch recombination efficiency. We propose that the RNA exosome protects divergently transcribed lncRNA expressing enhancers, by resolving deleterious transcription-coupled secondary DNA structures, while also regulating long-range super-enhancer chromosomal interactions important for cellular function.
The vast majority of the mammalian genome has the potential to expressnoncoding RNA (ncRNA). The 11-subunit RNA exosome complex is the main source of cellular 3′–5′ exoribonucleolytic activity and potentially regulates the mammalian noncoding transcriptome1. Here we generated a mouse model in which the essential subunit Exosc3 of the RNA exosome complex can be conditionally deleted. Exosc3-deficient B cells lack the ability to undergo normal levels of class switch recombination and somatic hypermutation, two mutagenic DNA processes used to generate antibody diversity via the B-cell mutator protein activation-induced cytidine deaminase (AID)2,3. The transcriptome of Exosc3-deficient B cells has revealed the presence of many novel RNA exosome substrate ncRNAs. RNA exosome substrate RNAs include xTSS-RNAs, transcription start site (TSS)-associated antisense transcripts that can exceed 500 base pairs in length and are transcribed divergently from cognate coding gene transcripts. xTSS-RNAs are most strongly expressed at genes that accumulate AID-mediated somatic mutations and/or are frequent translocation partners of DNA double-strand breaks generated at Igh in B cells4,5. Strikingly, translocations near TSSs or within gene bodies occur over regions of RNA exosome substrate ncRNA expression. These RNA exosome-regulated, antisense-transcribed regions of the B-cell genome recruit AID and accumulate single-strand DNA structures containing RNA–DNA hybrids. We propose that RNA exosome regulation of ncRNA recruits AID to single-strand DNA-forming sites of antisense and divergent transcription in the B-cell genome, thereby creating a link between ncRNA transcription and overall maintenance of B-cell genomic integrity.
Summary Regulatory B cells (Breg) have immune suppressive functions in various autoimmune/inflammation models and diseases, and are found enriched in diverse B-cell subsets. The lack of a unique marker or set of markers efficiently identifying Breg cells impedes detailed investigation into their origin, development, and immunological roles. Here, we perform transcriptome analysis of IL10-expressing B cells to identify key regulators for Breg biogenesis and function and identify CD9, a tetraspanin-family transmembrane protein, as a key surface marker for most mouse IL10+ B cells and their progenitors. CD9 plays a role in the suppressive function of IL10+ B cells in ex-vivo T cell proliferation assays through a mechanism that is dependent upon B/T cell interactions. CD9+ B cells also demonstrate inhibition of Th1 mediated contact hypersensitivity in an in vivo model system. Taken together, our findings implicate CD9 in the immunosuppressive activity of regulatory B cells.
SUMMARY Regulatory T (Treg) cells expressing the transcription factor Foxp3 are critical for the prevention of autoimmunity and the suppression of anti-tumor immunity. The major self antigens recognized by Treg cells remain undefined, representing a substantial barrier to the understanding of immune regulation. Here, we have identified natural Treg cell ligands in mice. We found that two recurrent Treg cell clones, one prevalent in prostate tumors and the second associated with prostatic autoimmune lesions, recognized distinct non-overlapping MHC class-II-restricted peptides derived from the same prostate-specific protein. Notably, this protein is frequently targeted by autoantibodies in experimental models of prostatic autoimmunity. Based on these findings, we propose a model in which Treg cell responses at peripheral sites converge on those self proteins that are most susceptible to autoimmune attack, and we suggest that this link may be exploited as a generalizable strategy to identify the Treg cell antigens relevant to human autoimmunity.
The impact of the season on flowering time and the organization and morphogenesis of the reproductive structures are described in three tomato mutants: compound inflorescence (s), single flower truss (sft), and jointless (j), respectively, compared with their wild-type cultivars Ailsa Craig (AC), Platense (Pl), and Heinz (Hz). In all environmental conditions, the sft mutant flowered significantly later than its corresponding Pl cultivar while flowering time in j was only marginally, but consistently, delayed compared with Hz. The SFT gene and, to a lesser extent, the J gene thus appear to be constitutive flowering promoters. Flowering in s was delayed in winter but not in summer compared with the AC cultivar, suggesting the existence of an environmentally regulated pathway for the control of floral transition. The reproductive structure of tomato is a raceme-like inflorescence and genes regulating its morphogenesis may thus be divided into inflorescence and floral meristem identity genes as in Arabidopsis. The s mutant developed highly branched inflorescences bearing up to 200 flowers due to the conversion of floral meristems into inflorescence meristems. The S gene appears to be a floral meristem identity gene. Both sft and j mutants formed reproductive structures containing flowers and leaves and reverting to a vegetative sympodial growth. The SFT gene appears to regulate the identity of the inflorescence meristem of tomato and is also involved, along with the J gene, in the maintenance of this identity, preventing reversion to a vegetative identity. These results are discussed in relation to knowledge accumulated in Arabidopsis and to domestication processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.