Abstract. Concentrations of OH radicals and the sum of peroxy radicals, RO 2 , were measured in the boundary layer for the first time on the East Antarctic Plateau at the Concordia Station (Dome C, 75.10 • S, 123.31 • E) during the austral summer 2011/2012. The median concentrations of OH and RO 2 radicals were 3.1 × 10 6 molecule cm −3 and 9.9 × 10 7 molecule cm −3 , respectively. These values are comparable to those observed at the South Pole, confirming that the elevated oxidative capacity of the Antarctic atmospheric boundary layer found at the South Pole is not restricted to the South Pole but common over the high Antarctic plateau. At Concordia, the concentration of radicals showed distinct diurnal profiles with the median maximum of 5.2 × 10 6 molecule cm −3 at 11:00 and the median minimum of 1.1 × 10 6 molecule cm −3 at 01:00 for OH radicals and 1.7 × 10 8 molecule cm −3 and 2.5 × 10 7 molecule cm −3 for RO 2 radicals at 13:00 and 23:00, respectively (all times are local times). Concurrent measurements of O 3 , HONO, NO, NO 2 , HCHO and H 2 O 2 demonstrated that the major primary source of OH and RO 2 radicals at Dome C was the photolysis of HONO, HCHO and H 2 O 2 , with the photolysis of HONO contributing ∼ 75 % of total primary radical production. However, photochemical modelling with accounting for all these radical sources overestimates the concentrations of OH and RO 2 radicals by a factor of 2 compared to field observations. Neglecting the net OH production from HONO in the photochemical modelling results in an underestimation of the concentrations of OH and RO 2 radicals by a factor of 2. To explain the observations of radicals in this case an additional source of OH equivalent to about (25-35) % of measured photolysis of HONO is required. Even with a factor of 5 reduction in the concentrations of HONO, the photolysis of HONO represents the major primary radical source at Dome C. To account for a possibility of an overestimation of NO 2 observed at Dome C the calculations were also performed with NO 2 concentrations estimated by assuming steady-state NO 2 / NO ratios. In this case the net radical production from the photolysis of HONO should be reduced by a factor of 5 or completely removed based on the photochemical budget of OH or 0-D modelling, respectively. Another major factor leading to the large concentration of OH radicals measured at Dome C was large concentrations of NO molecules and fast recycling of peroxy radicals to OH radicals.
Abstract. Variations in the stable oxygen isotope composition of atmospheric nitrate act as novel tools for studying oxidative processes taking place in the troposphere. They provide both qualitative and quantitative constraints on the pathways determining the fate of atmospheric nitrogen oxides (NO + NO2 = NOx). The unique and distinctive 17O excess (Δ17O = δ17O − 0.52 × δ18O) of ozone, which is transferred to NOx via oxidation, is a particularly useful isotopic fingerprint in studies of NOx transformations. Constraining the propagation of 17O excess within the NOx cycle is critical in polar areas, where there exists the possibility of extending atmospheric investigations to the glacial–interglacial timescale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C (East Antarctic Plateau) during the austral summer of 2011/2012. Nitrate isotope analysis has been here combined for the first time with key precursors involved in nitrate production (NOx, O3, OH, HO2, RO2, etc.) and direct observations of the transferrable Δ17O of surface ozone, which was measured at Dome C throughout 2012 using our recently developed analytical approach. Assuming that nitrate is mainly produced in Antarctica in summer through the OH + NO2 pathway and using concurrent measurements of OH and NO2, we calculated a Δ17O signature for nitrate on the order of (21–22 ± 3) ‰. These values are lower than the measured values that ranged between 27 and 31 ‰. This discrepancy between expected and observed Δ17O(NO3−) values suggests the existence of an unknown process that contributes significantly to the atmospheric nitrate budget over this East Antarctic region. However, systematic errors or false isotopic balance transfer functions are not totally excluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.