Hepatic steatosis is a major feature associated with NAFLD (non-alcoholic fatty liver disease). The aims of the present study were to assess the levels of PUFA (polyunsaturated fatty acids) in liver total lipids, triacylglycerols (triglycerides) and phospholipids of NAFLD patients in relation to those in adipose tissue and hepatic indexes related to oxidative stress as factors contributing to hepatic steatosis. Eleven control subjects and 19 patients with NAFLD were studied. Analysis of liver and abdominal adipose tissue fatty acids was carried out by GLC. The liver content of protein carbonyl groups and malondialdehyde were taken as indexes related to oxidative stress. NAFLD patients had a depletion in LCPUFA (long-chain PUFA) of the n -6 and n -3 series in liver triacylglycerols, with decreased 20:4, n -6/18:2, n -6 and (20:5, n -3+22:6, n -3)/18:3, n -3 ratios, whereas liver phospholipids contained higher n -6 and lower n -3 LCPUFA. These findings were accompanied by an enhancement of (i) n -6/ n -3 ratio in liver and adipose tissue, (ii) 18:1, n -9 trans levels in adipose tissue, and (iii) hepatic lipid peroxidation and protein oxidation indexes. It is concluded that a marked enhancement in LCPUFA n -6/ n -3 ratio occurs in the liver of NAFLD patients, a condition that may favour lipid synthesis over oxidation and secretion, thereby leading to steatosis. Depletion of hepatic LCPUFA may result from both defective desaturation of PUFA, due to inadequate intake of precursors, such as 18:3, n -3, and higher intake of the 18:1, n -9 trans isomer leading to desaturase inhibition, and from an increased peroxidation of LCPUFA due to oxidative stress.
Oxidative stress is implicated in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). In the present study, hepatic and plasma oxidative stress-related parameters were measured and correlated with clinical and histological findings in 31 NAFLD patients showing increased body mass index. Liver protein carbonyl content was enhanced by 403% in patients with steatosis (n=15) compared with control values (n=12), whereas glutathione content, superoxide dismutase (SOD) activity and the ferric reducing ability of plasma (FRAP) were decreased by 57%, 48% and 21% (P<0.05) respectively. No changes in microsomal p-nitrophenol hydroxylation and the total content of cytochrome P450 (CYP) or CYP2E1 were observed. Patients with steatohepatitis (n=16) exhibited protein carbonyl content comparable with that of controls, whereas glutathione content, SOD and catalase activities were decreased by 27%, 64% and 48% (P<0.05). In addition, FRAP values in patients with steatohepatitis were reduced by 33% and 15% (P<0.05) when compared with controls and patients with steatosis respectively, whereas p-nitrophenol hydroxylation (52%) and CYP2E1 content (142%) were significantly increased (P<0.05) compared with controls. It is concluded that oxidative stress is developed in the liver of NAFLD patients with steatosis and is exacerbated further in patients with steatohepatitis, which is associated with CYP2E1 induction. Substantial protein oxidation is followed by proteolysis of the modified proteins, which may explain the co-existence of a diminished antioxidant capacity and protein oxidation in the liver of patients with steatohepatitis.
Sterol receptor element-binding protein-1c (SREBP-1c) and peroxisome proliferator-activated receptor-alpha (PPAR-alpha) mRNA expression was assessed in liver as signaling mechanisms associated with steatosis in obese patients. Liver SREBP-1c and PPAR-alpha mRNA (RT-PCR), fatty acid synthase (FAS) and carnitine palmitoyltransferase-1a (CPT-1a) mRNA (real-time RT-PCR), and n-3 long-chain polyunsaturated fatty acid (LCPUFA)(GLC) contents, plasma adiponectin levels (RIA), and insulin resistance (IR) evolution (HOMA) were evaluated in 11 obese patients who underwent subtotal gastrectomy with gastro-jejunal anastomosis in Roux-en-Y and 8 non-obese subjects who underwent laparoscopic cholecystectomy (controls). Liver SREBP-1c and FAS mRNA levels were 33% and 70% higher than control values (P<0.05), respectively, whereas those of PPAR-alpha and CPT-1a were 16% and 65% lower (P<0.05), respectively, with a significant 62% enhancement in the SREBP-1c/PPAR-alpha ratio. Liver n-3 LCPUFA levels were 53% lower in obese patients who also showed IR and hipoadiponectinemia over controls (P<0.05). IR negatively correlated with both the hepatic content of n-3 LCPUFA (r=-0.55; P<0.01) and the plasma levels of adiponectin (r=-0.62; P<0.005). Liver SREBP-1c/PPAR-alpha ratio and n-3 LCPUFA showed a negative correlation (r=-0.48; P<0.02) and positive associations with either HOMA (r=0.75; P<0.0001) or serum insulin levels (r=0.69; P<0.001). In conclusion, liver up-regulation of SREBP-1c and down-regulation of PPAR-alpha occur in obese patients, with enhancement in the SREBP-1c/PPAR-alpha ratio associated with n-3 LCPUFA depletion and IR, a condition that may favor lipogenesis over FA oxidation thereby leading to steatosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.