A spectacular measurement campaign was carried out on a real-world motorway stretch of Hungary with the participation of international industrial and academic partners. The measurement resulted in vehicle based and infrastructure based sensor data that will be extremely useful for future automotive R&D activities due to the available ground truth for static and dynamic content. The aim of the measurement campaign was twofold. On the one hand, road geometry was mapped with high precision in order to build Ultra High Definition (UHD) map of the test road. On the other hand, the vehicles—equipped with differential Global Navigation Satellite Systems (GNSS) for ground truth localization—carried out special test scenarios while collecting detailed data using different sensors. All of the test runs were recorded by both vehicles and infrastructure. The paper also showcases application examples to demonstrate the viability of the collected data having access to the ground truth labeling. This data set may support a large variety of solutions, for the test and validation of different kinds of approaches and techniques. As a complementary task, the available 5G network was monitored and tested under different radio conditions to investigate the latency results for different measurement scenarios. A part of the measured data has been shared openly, such that interested automotive and academic parties may use it for their own purposes.
The virtual testing and validation of advanced driver assistance system and automated driving (ADAS/AD) functions require efficient and realistic perception sensor models. In particular, the limitations and measurement errors of real perception sensors need to be simulated realistically in order to generate useful sensor data for the ADAS/AD function under test. In this paper, a novel sensor modeling approach for automotive perception sensors is introduced. The novel approach combines kernel density estimation with regression modeling and puts the main focus on the position measurement errors. The modeling approach is designed for any automotive perception sensor that provides position estimations at the object level. To demonstrate and evaluate the new approach, a common state-of-the-art automotive camera (Mobileye 630) was considered. Both sensor measurements (Mobileye position estimations) and ground-truth data (DGPS positions of all attending vehicles) were collected during a large measurement campaign on a Hungarian highway to support the development and experimental validation of the new approach. The quality of the model was tested and compared to reference measurements, leading to a pointwise position error of 9.60% in the lateral and 1.57% in the longitudinal direction. Additionally, the modeling of the natural scattering of the sensor model output was satisfying. In particular, the deviations of the position measurements were well modeled with this approach.
The paper presents the measurement campaign carried out on a real-world motorway stretch of Hungary with the participation of both industrial and academic partners from Austria and Hungary. The measurement included vehicle based as well as infrastructure based sensor data. The obtained results will be extremely useful for future automotive R&D activities due to the available ground truth for static and dynamic content. The aim of the measurement campaign was twofold. On the one hand, road geometry was mapped with high precision in order to build Ultra High Definition (UHD) map of the test road. On the other hand, the vehicles - equipped with differential Global Navigation Satellite Systems (GNSS) for ground truth localization - carried out special test scenarios while collecting detailed data using different sensors. All test runs were recorded by both vehicles and infrastructure. As a complementary task, the available 5G network was monitored and tested. The paper also showcases application examples based on the measurement campaign data, in which the added value of having access to the ground truth labeling and the created UHD map of the motorway section becomes apparent. In order to present our work transparently, a part of the measured data have been shared openly such that interested automotive as well as academic parties may use it for their own purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.