This paper summarizes the current knowledge on the nature, kinematics and timing of movement along major tectonic boundaries in the Bohemian Massif and demonstrates how the Variscan plutonism and deformation evolved in space and time. Four main episodes are recognized: (1) Late Devonian–early Carboniferous subduction and continental underthrusting of the Saxothuringian Unit beneath the Teplá–Barrandian Unit resulted in the orogen-perpendicular shortening and growth of an inboard magmatic arc during c. 354–346 Ma; (2) the subduction-driven shortening was replaced by collapse of the Teplá–Barrandian upper crust, exhumation of the high-grade (Moldanubian) core of the orogen at c. 346–337 Ma and by dextral strike-slip along orogen-perpendicular NW–SE shear zones; (3) following closure of a Rhenohercynian Ocean basin, the Brunia microplate was underthrust beneath the eastern flank of the Saxothuringian/Teplá–Barrandian/Moldanubian ‘assemblage’; this process commenced at c. 346 Ma in the NE and ceased at c. 335 Ma in the SW; and (4) late readjustments within the amalgamated Bohemian Massif included crustal exhumation and mainly S-type granite plutonism along the edge of the Brunia indentor at c. 330–327 Ma, and peripheral tectonothermal activity driven by strike-slip faulting and possibly mantle delamination around the consolidated Bohemian Massif's interior until late Carboniferous–earliest Permian times.
The Plechý pluton, southwestern Bohemian Massif, represents a late-Variscan, complexly zoned intrusive center emplaced near the crustal-scale Pfahl shear zone; the pluton thus provides an opportunity to examine the interplay among successive emplacement of large magma batches, magmatic fabric acquisition, and the late-Variscan stress field associated with strike-slip shearing. The magmatic history of the pluton started with the emplacement of the porphyritic Plechý and Haidmühler granites. Based on gravity and structural data, we interpret that the Plechý and Haidmühler granites were emplaced as a deeply rooted, *NE-SW elongated body; its gross shape and internal fabric (steep *NE-SW magmatic foliation) may have been controlled by the late-Variscan stress field. The steep magmatic foliation changes into flat-lying foliation (particularly recorded by AMS) presumably as a result of divergent flow. Magnetic lineations correspond to a sub-horizontal *NE-SW finite stretch associated with the divergent flow. Subsequently, the Třístoličník granite, characterized by steep margin-parallel magmatic foliation, was emplaced as a crescent-shaped body in the central part of the pluton. The otherwise inward-younging intrusive sequence was completed by the emplacement of the outermost and the most evolved garnet-bearing granite (the Marginal granite) along the southeastern margin of the pluton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.