Objective: Visual snow (VS) is a distressing, life-impacting condition with persistent visual phenomena. VS patients show cerebral hypermetabolism within the visual cortex, resulting in altered neuronal excitability. We hypothesized to see disease-dependent alterations in functional connectivity and gray matter volume (GMV) in regions associated with visual perception. Methods: Nineteen patients with VS and 16 sex-and age-matched controls were recruited. Functional magnetic resonance imaging (fMRI) was applied to examine resting-state functional connectivity (rsFC). Volume changes were assessed by means of voxel-based morphometry (VBM). Finally, we assessed associations between MRI indices and clinical parameters. Results: Patients with VS showed hyperconnectivity between extrastriate visual and inferior temporal brain regions and also between prefrontal and parietal (angular cortex) brain regions (p < 0.05, corrected for age and migraine occurrence). In addition, patients showed increased GMV in the right lingual gyrus (p < 0.05 corrected). Symptom duration positively correlated with GMV in both lingual gyri (p < 0.01 corrected). Conclusion: This study found VS to be associated with both functional and structural changes in the early and higher visual cortex, as well as the temporal cortex. These brain regions are involved in visual processing, memory, spatial attention, and cognitive control. We conclude that VS is not just confined to the visual system and that both functional and structural changes arise in VS patients, be it as an epiphenomenon or a direct contributor to the pathomechanism of VS. These in vivo neuroimaging biomarkers may hold potential as objective outcome measures of this so far purely subjective condition.
This work was conducted to study the plasticity of superior (SCP) and middle (MCP) cerebellar peduncles in musicians. The cerebellum is well known to support several musically relevant motor, sensory and cognitive functions. Previous studies reported increased cerebellar volume and grey matter (GM) density in musicians. Here, we report on plasticity of white matter (WM) of the cerebellum. Our cohort included 10/10 gender and handedness-matched musicians and controls. Using diffusion tensor imaging, fibre tractography of SCP and MCP was performed. The fractional anisotropy (FA), number of streamlines and volume of streamlines of SCP/MCP were compared between groups. Automatic measurements of GM and WM volumes of the right/left cerebellar hemispheres were also compared. Musicians have significantly increased right SCP volume (p = 0.02) and number of streamlines (p = 0.001), right MCP volume (p = 0.004) and total WM volume of the right cerebellum (p = 0.003). There were no significant differences in right MCP number of streamlines, left SCP/MCP volume and number of streamlines, SCP/MCP FA values, GM volume of the right cerebellum and GM/WM volumes of the left cerebellum. We propose that increased volume and number of streamlines of the right cerebellar peduncles represent use-dependent structural adaptation to increased sensorimotor and cognitive functional demands on the musician's cerebellum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.