We report on the research conducted by the Community Action Against Asthma (CAAA) in Detroit, Michigan, to evaluate personal and community-level exposures to particulate matter (PM) among children with asthma living in an urban environment. CAAA is a community-based participatory research collaboration among academia, health agencies, and community-based organizations. CAAA investigates the effects of environmental exposures on the residents of Detroit through a participatory process that engages participants from the affected communities in all aspects of the design and conduct of the research; disseminates the results to all parties involved; and uses the research results to design, in collaboration with all partners, interventions to reduce the identified environmental exposures. The CAAA PM exposure assessment includes four seasonal measurement campaigns each year that are conducted for a 2-week duration each season. In each seasonal measurement period, daily ambient measurements of PM 2.5 and PM 10 (particulate matter with a mass median aerodynamic diameter less than 2.5 µm and 10 µm, respectively) are collected at two elementary schools in the eastside and southwest communities of Detroit. Concurrently, indoor measurements of PM 2.5 and PM 10
BackgroundCerium oxide (CeO2) nanoparticles used as a diesel fuel additive can be emitted into the ambient air leading to human inhalation. Although biological studies have shown CeO2 nanoparticles can cause adverse health effects, the extent of the biodistribution of CeO2 nanoparticles through inhalation has not been well characterized. Furthermore, freshly emitted CeO2 nanoparticles can undergo an aging process by interaction with other ambient airborne pollutants that may influence the biodistribution after inhalation. Therefore, understanding the pharmacokinetic of newly-generated and atmospherically-aged CeO2 nanoparticles is needed to assess the risks to human health.MethodsA novel experimental system was designed to integrate the generation, aging, and inhalation exposure of Sprague Dawley rats to combustion-generated CeO2 nanoparticles (25 and 90 nm bimodal distribution). Aging was done in a chamber representing typical ambient urban air conditions with UV lights. Following a single 4-hour nose-only exposure to freshly emitted or aged CeO2 for 15 min, 24 h, and 7 days, ICP-MS detection of Ce in the blood, lungs, gastrointestinal tract, liver, spleen, kidneys, heart, brain, olfactory bulb, urine, and feces were analyzed with a mass balance approach to gain an overarching understanding of the distribution. A physiologically based pharmacokinetic (PBPK) model that includes mucociliary clearance, phagocytosis, and entry into the systemic circulation by alveolar wall penetration was developed to predict the biodistribution kinetic of the inhaled CeO2 nanoparticles.ResultsCerium was predominantly recovered in the lungs and feces, with extrapulmonary organs contributing less than 4 % to the recovery rate at 24 h post exposure. No significant differences in biodistribution patterns were found between fresh and aged CeO2 nanoparticles. The PBPK model predicted the biodistribution well and identified phagocytizing cells in the pulmonary region accountable for most of the nanoparticles not eliminated by feces.ConclusionsThe biodistribution of fresh and aged CeO2 nanoparticles followed the same patterns, with the highest amounts recovered in the feces and lungs. The slow decrease of nanoparticle concentrations in the lungs can be explained by clearance to the gastrointestinal tract and then to the feces. The PBPK model successfully predicted the kinetic of CeO2 nanoparticles in various organs measured in this study and suggested most of the nanoparticles were captured by phagocytizing cells.Electronic supplementary materialThe online version of this article (doi:10.1186/s12989-016-0156-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.