Human cytomegalovirus (HCMV) in clinical material cannot replicate efficiently in vitro until it has adapted by mutation. Consequently, wild-type HCMV differ fundamentally from the passaged strains used for research. To generate a genetically intact source of HCMV, we cloned strain Merlin into a self-excising BAC. The Merlin BAC clone had mutations in the RL13 gene and UL128 locus that were acquired during limited replication in vitro prior to cloning. The complete wild-type HCMV gene complement was reconstructed by reference to the original clinical sample. Characterization of viruses generated from repaired BACs revealed that RL13 efficiently repressed HCMV replication in multiple cell types; moreover, RL13 mutants rapidly and reproducibly emerged in transfectants. Virus also acquired mutations in genes UL128, UL130, or UL131A, which inhibited virus growth specifically in fibroblast cells in wild-type form. We further report that RL13 encodes a highly glycosylated virion envelope protein and thus has the potential to modulate tropism. To overcome rapid emergence of mutations in genetically intact HCMV, we developed a system in which RL13 and UL131A were conditionally repressed during virus propagation. This technological advance now permits studies to be undertaken with a clonal, characterized HCMV strain containing the complete wild-type gene complement and promises to enhance the clinical relevance of fundamental research on HCMV.
NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family.
Human cytomegalovirus (HCMV) extensively modulates host cells, downregulating >900 human proteins during viral replication and degrading ≥133 proteins shortly after infection. The mechanism of degradation of most host proteins remains unresolved, and the functions of many viral proteins are incompletely characterised. We performed a mass spectrometry-based interactome analysis of 169 tagged, stably-expressed canonical strain Merlin HCMV proteins, and two non-canonical HCMV proteins, in infected cells. This identified a network of >3400 virus-host and >150 virus-virus protein interactions, providing insights into functions for multiple viral genes. Domain analysis predicted binding of the viral UL25 protein to SH3 domains of NCK Adaptor Protein-1. Viral interacting proteins were identified for 31/133 degraded host targets. Finally, the uncharacterised, non-canonical ORFL147C protein was found to interact with elements of the mRNA splicing machinery, and a mutational study suggested its importance in viral replication. The interactome data will be important for future studies of herpesvirus infection.
Human cytomegalovirus (HCMV) UL141 induces protection against natural killer cell-mediated cytolysis by downregulating cell surface expression of CD155 (nectin-like molecule 5; poliovirus receptor), a ligand for the activating receptor DNAM-1 (CD226). However, DNAM-1 is also recognized to bind a second ligand, CD112 (nectin-2). We now show that HCMV targets CD112 for proteasome-mediated degradation by 48 h post-infection, thus removing both activating ligands for DNAM-1 from the cell surface during productive infection. Significantly, cell surface expression of both CD112 and CD155 was restored when UL141 was deleted from the HCMV genome. While gpUL141 alone is sufficient to mediate retention of CD155 in the endoplasmic reticulum, UL141 requires assistance from additional HCMV-encoded functions to suppress expression of CD112.
To examine as randomly as possible the role of the -ketoacyl and acyl carrier protein (ACP) components of bacterial type II polyketide synthases (PKSs), homologs of the chain-length-factor (CLF) genes were cloned from the environmental community of microorganisms. With PCR primers derived from conserved regions of known ketosynthase (KS ␣ ) and ACP genes specifying the formation of 16-to 24-carbon polyketides, two CLF (KS  ) genes were cloned from unclassified streptomycetes isolated from the soil, and two were cloned from soil DNA without the prior isolation of the parent microorganism. The sequence and deduced product of each gene were distinct from those of known KS  genes and, by phylogenetic analysis, belonged to antibiotic-producing PKS gene clusters. Hybrid PKS gene cassettes were constructed with each novel KS  gene substituted for the actI-ORF2 or tcmL KS  subunit genes, along with the respective actI-ORF1 or tcmK KS ␣ , tcmM ACP, and tcmN cyclase genes, and were found to produce an octaketide or decaketide product characteristic of the ones known to be made by the heterologous KS ␣ gene partner. Since substantially less than 1% of the microorganisms present in soil are thought to be cultivatable by standard methods, this work demonstrates a potential way to gain access to a more extensive range of microbial molecular diversity and to biosynthetic pathways whose products can be tested for biological applications.The polyketide metabolites are a large group of structurally complex and diverse natural products, many of which are clinically valuable antibiotics or chemotherapeutic agents or have other useful pharmacological activities (48). Polyketides are synthesized by polyketide synthases (PKSs) which, like the related fatty acid synthases, are multifunctional enzyme assemblies that catalyze repeated decarboxylative condensations between enzyme-bound acylthioesters (52). The structural diversity of polyketides is a result of the different numbers and types of acyl units involved, coupled with various possibilities for enzyme-mediated reduction, dehydration, cyclization, and aromatization of the initial -ketoacyl condensation products (52). Manipulation of the sequence or specificity of the PKS enzymes can lead to the production of novel secondary metabolites (28,29,33). The key to further exploitation of this approach to molecular diversity lies in an increased understanding of the genetics and biochemistry of the various PKS systems.Recent progress in the cloning and sequencing of microbial PKS genes has led to the identification of at least two architecturally different types of PKSs (28, 33). Modular type I PKSs, represented by erythromycin A (11, 17), avermectin (41), rapamycin (58), and soraphen (57), are discrete multifunctional enzymes sporting numerous unique active site domains. The domains are grouped into distinct modules that in turn control the sequential addition of acylthioester units to the growing polyketide chain and the subsequent modification of the respective condensation prod...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.