We present the COSMOS2015 a catalog which contains precise photometric redshifts and stellar masses for more than half a million objects over the 2deg 2 COSMOS field. Including new Y JHK s images from the UltraVISTA-DR2 survey, Y -band from Subaru/Hyper-Suprime-Cam and infrared data from the Spitzer Large Area Survey with the Hyper-Suprime-Cam Spitzer legacy program, this near-infraredselected catalog is highly optimized for the study of galaxy evolution and environments in the early Universe. To maximise catalog completeness for bluer objects and at higher redshifts, objects have been detected on a χ 2 sum of the Y JHK s and z ++ images. The catalog contains ∼ 6 × 10 5 objects in the 1.5 deg 2 UltraVISTA-DR2 region, and ∼ 1.5 × 10 5 objects are detected in the "ultra-deep stripes" (0.62 deg 2 ) at K s ≤ 24.7 (3σ, 3 , AB magnitude). Through a comparison with the zCOSMOSbright spectroscopic redshifts, we measure a photometric redshift precision of σ ∆z/(1+zs) = 0.007 and a catastrophic failure fraction of η = 0.5%. At 3 < z < 6, using the unique database of spectroscopic redshifts in COSMOS, we find σ ∆z/(1+zs) = 0.021 and η = 13.2%. The deepest regions reach a 90% completeness limit of 10 10 M to z = 4. Detailed comparisons of the color distributions, number counts, and clustering show excellent agreement with the literature in the same mass ranges. COSMOS2015 represents a unique, publicly available, valuable resource with which to investigate the evolution of galaxies within their environment back to the earliest stages of the history of the Universe. The COSMOS2015 catalog is distributed via anonymous ftp b and through the usual astronomical archive systems (CDS, ESO, IRSA).
The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8-1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the mid-ultraviolet to the near-infrared, and will find and measure Type Ia supernovae at z > 1.5 to test their accuracy as standardizable candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10 9 M to z ≈ 2, reaching the knee of the ultraviolet luminosity function of galaxies to z ≈ 8. The survey covers approximately 800 arcmin 2 and is divided into two parts. The CANDELS/Deep survey (5σ point-source limit H = 27.7 mag) covers ∼125 arcmin 2 within Great Observatories Origins Deep Survey (GOODS)-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (Extended Groth Strip, COSMOS, and Ultra-deep Survey) and covers the full area to a 5σ pointsource limit of H 27.0 mag. Together with the Hubble Ultra Deep Fields, the strategy creates a three-tiered "wedding-cake" approach that has proven efficient for extragalactic surveys. Data from the survey are nonproprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design. The Hubble data processing and products are described in a companion paper.
We present measurements of the stellar mass functions (SMFs) of star-forming and quiescent galaxies to z = 4 using a sample of 95 675 galaxies in the COSMOS/UltraVISTA field. Sources have been selected from the DR1 UltraVISTA K s -band imaging which covers a unique combination of a wide area (1.62 deg 2 ), to a significant depth (K s,tot = 23.4, 90% completeness). The SMFs of the combined population are in good agreement with previous measurements and show that the stellar mass density of the universe was only 50%, 10% and 1% of its current value at z ∼ 0.75, 2.0, and 3.5, respectively. The quiescent population drives most of the overall growth, with the stellar mass density of these galaxies increasing as ρ star ∝ (1 + z) −4.7±0.4 since z = 3.5, whereas the mass density of star-forming galaxies increases as ρ star ∝ (1 + z) −2.3±0.2 . At z > 2.5, star-forming galaxies dominate the total SMF at all stellar masses, although a nonzero population of quiescent galaxies persists to z = 4. Comparisons of the K s -selected star-forming galaxy SMFs to UV-selected SMFs at 2.5 < z < 4 show reasonable agreement and suggests UV-selected samples are representative of the majority of the stellar mass density at z > 3.5. We estimate the average mass growth of individual galaxies by selecting galaxies at fixed cumulative number density. The average galaxy with Log(M * /M ⊙ ) = 11.5 at z = 0.3 has grown in mass by only 0.2 dex (0.3 dex) since z = 2.0(3.5), whereas those with Log(M * /M ⊙ ) = 10.5 have grown by > 1.0 dex since z = 2. At z < 2, the time derivatives of the mass growth are always larger for lower-mass galaxies, which demonstrates that the mass growth in galaxies since that redshift is mass-dependent and primarily bottom-up. Lastly, we examine potential sources of systematic uncertainties on the SMFs and find that those from photo-z templates, SPS modeling, and the definition of quiescent galaxies dominate the total error budget in the SMFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.