The MCF10 series of cell lines was derived from benign breast tissue from a woman with fibrocystic disease. The MCF10 human breast epithelial model system consists of mortal MCF10M and MCF10MS (mortal cells grown in serum-free and serum-containing media, respectively), immortalized but otherwise normal MCF10F and MCF10A lines (free-floating versus growth as attached cells), transformed MCF10AneoT cells transfected with T24 Ha-ras, and premalignant MCF10AT cells with potential for neoplastic progression. The MCF10AT, derived from xenograft-passaged MCF10-AneoT cells, generates carcinomas in approximately 25% of xenografts. We now report the derivation of fully malignant MCF10CA1 lines that complete the spectrum of progression from relatively normal breast epithelial cells to breast cancer cells capable of metastasis. MCF10CA1 lines display histologic variations ranging from undifferentiated carcinomas, sometimes with focal squamous differentiation, to well-differentiated adenocarcinomas. At least two metastasize to the lung following injection of cells into the tail vein; one line grows very rapidly in the lung, with animals moribund within 4 weeks, whereas the other requires 15 weeks to reach the same endpoint. In addition to variations in efficiency of tumor production, the MCF10CA1 lines show differences in morphology in culture, anchorage-independent growth, karyotype, and immunocytochemistry profiles. The MCF10 model provides a unique tool for the investigation of molecular changes during progression of human breast neoplasia and the generation of tumor heterogeneity on a common genetic background.
A method described to purify pluripotent hemopoietic stem cells ( PHSC ) from adult mouse bone marrow. The method consists of three separation steps. First, bone marrow cells are centrifuged in a discontinuous metrizamide gradient and simultaneously labeled with wheat germ agglutinin-fluorescein isothiocyanate (WGA-FITC). Second, the low density cells are analyzed by a fluorescence-activated cell sorter (FACS) and the WGA-positive cells with medium forward and low perpendicular light scatter intensities are sorted. The WGA-FITC is removed from the cells by incubation with N-acetyl-D-glucosamine. Finally, the sorted cells are incubated with anti-H-2K-biotin and avidin-FITC and sorted a second time to enrich cells with high H-2K density. The sorted cells gave rise to 2 spleen colonies per 100 injected cells at 8 d and 6.6 colonies per 100 cells at 12 d after transplantation into lethally irradiated syngeneic recipients. The average enrichment factor for day 12 CFU-S (colony-forming unit/spleen) was 135 (range, 90--230; n = 15) and was similar to that for the cell type that provides radioprotection (180 +/- 70), indicating that these functional properties were copurified. Indirect evidence suggests that the spleen-seeding efficiency (f factor) of these cells is 0.10 and, therefore, the average purity of the sorted PHSC was 65% (range in 15 experiments, 35--110%). The sorted cells were all in the G1 or G0 phase of the cell cycle. They appeared to be undifferentiated blasts by morphological criteria. Electron microscopy revealed that the sorted cells consisted primarily of two cell types, possibly representing G0 and G1 cells. The FACS was used to deposit single selected cells into individual microwells of Terasaki trays. 32% of the sorted cells could be induced to form myeloid progeny in vitro. This procedure should be useful for direct studies on the regulation of hemopoietic cell differentiation.
Background: Management and traceability of biospecimen preanalytical variations are necessary to provide effective and efficient interconnectivity and interoperability between Biobanks.Methods: Therefore, the International Society for Biological and Environmental Repositories Biospecimen Science Working Group developed a "Standard PREanalytical Code" (SPREC) that identifies the main preanalytical factors of clinical fluid and solid biospecimens and their simple derivatives.Results: The SPREC is easy to implement and can be integrated into Biobank quality management systems and databases. It can also be extended to nonhuman biorepository areas. Its flexibility allows integration of new novel technological developments in future versions. SPREC version 01 is presented in this article.Conclusions and Impact: Implementation of the SPREC is expected to facilitate and consolidate international multicenter biomarker identification research and biospecimen research in the clinical Biobank environment. Cancer Epidemiol Biomarkers Prev; 19(4); 1004-11. ©2010 AACR.
The first version of the Standard PREanalytical Code (SPREC) was developed in 2009 by the International Society for Biological and Environmental Repositories (ISBER) Biospecimen Science Working Group to facilitate documentation and communication of the most important preanalytical quality parameters of different types of biospecimens used for research. This same Working Group has now updated the SPREC to version 2.0, presented here, so that it contains more options to allow for recent technological developments. Existing elements have been fine tuned. An interface to the Biospecimen Reporting for Improved Study Quality (BRISQ) has been defined, and informatics solutions for SPREC implementation have been developed. A glossary with SPREC-related definitions has also been added.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.