The immediate environment of a molecule can have a profound influence on its properties. Benzocaine, the ethyl ester of para-aminobenzoic acid that finds an application as a local anesthetic, is found to adopt in its protonated form at least two populations of distinct structures in the gas phase, and their relative intensities strongly depend on the properties of the solvent used in the electrospray ionization process. Here, we combine IR-vibrational spectroscopy with ion mobility-mass spectrometry to yield gas-phase IR spectra of simultaneously m/z and drift-time-resolved species of benzocaine. The results allow for an unambiguous identification of two protomeric species: the N- and O-protonated forms. Density functional theory calculations link these structures to the most stable solution and gas-phase structures, respectively, with the electric properties of the surrounding medium being the main determinant for the preferred protonation site. The fact that the N-protonated form of benzocaine can be found in the gas phase is owed to kinetic trapping of the solution-phase structure during transfer into the experimental setup. These observations confirm earlier studies on similar molecules where N- and O-protonation have been suggested.
Phosphorylation is one the most studied and important post translational modifications. Nano electrospray mass spectrometry coupled with traveling wave (T-Wave)-based ion mobility has been used to filter for phosphorylated peptides in tryptic protein digests. T-Wave parameters have been optimized to maximize the separation between phosphorylated and non-phosphorylated peptides. A method to calibrate the T-Wave device, to provide estimates of collision cross sections, is presented, and these estimates are in excellent agreement with values obtained on drift cell instrumentation. Phosphorylated peptides have smaller cross sections which enables their separation from non-phosphorylated peptides of the same m/z. Post-mobility fragmentation is used to obtain the primary sequence for peptides of interest. This approach is shown to have potential as an additional screen for phosphorylated peptides, where up to 40% of observed peptides can be eliminated from the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.