DNA-templated silver nanoclusters (DNA/Ag NCs) are an emerging set of fluorophores that are smaller than semiconductor quantum dots and can have better photostability and brightness than commonly used organic dyes. Here we find the red fluorescence of DNA/Ag NCs can be enhanced 500-fold when placed in proximity to guanine-rich DNA sequences. On the basis of this new phenomenon, we have designed a DNA detection probe (NanoCluster Beacon, NCB) that "lights up" upon target binding. Since NCBs do not rely on Forster energy transfer for quenching, they can easily reach high (>100) signal-to-background ratios (S/B ratios) upon target binding. Here, in a separation-free assay, we demonstrate NCB detection of an influenza target with a S/B ratio of 175, a factor of 5 better than a conventional molecular beacon probe. Since the observed fluorescence enhancement is caused by intrinsic nucleobases, our detection technique is simple, inexpensive, and compatible with commercial DNA synthesizers.
We report the synthesis and photophysical properties of silver-nanoclusters templated on DNA, with fluorescence excitation and emission at distinct wavelengths that are tuned to common laser excitation wavelengths.
Rapid and precise screening of small genetic variations, such as single-nucleotide polymorphisms (SNPs), among an individual’s genome is still an unmet challenge at point-of-care settings. One crucial step towards this goal is the development of discrimination probes that require no enzymatic reaction and are easy to use. Here we report a new type of fluorescent molecular probe, termed a chameleon NanoCluster Beacon (cNCB), that lights up into different colors upon binding SNP targets. NanoCluster Beacons (NCBs) are collections of a small number of Ag atoms templated on single-stranded DNA that fluoresce strongly when placed in proximity to particular DNA sequences, termed enhancers. Here we show the fluorescence emission color of a NCB can change substantially (a shift of 60–70 nm in the emission maximum) depending upon the alignment between the silver nanocluster and the DNA enhancer sequence. Chameleon NCBs exploit this color shift to directly detect SNPs, based on the fact that different SNPs produce a different alignment between the Ag nanocluster and the enhancer. This SNP detection method has been validated on all single-nucleotide substitution scenarios in three synthetic DNA targets, in six disease-related SNP targets, and in two clinical samples taken from patients with ovarian serous borderline tumors. Samples with single-nucleotide variations can be easily identified by the naked eye under UV excitation, making this method a reliable and low-cost assay with a simple readout format.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.