Hepatitis C virus (HCV) infection is the most common blood borne infection in the U.S. with estimates of 4 million HCV-infected individuals in the U.S. and 170 million worldwide1. The majority (70%–80%) of HCV infections persist and about 30% of individuals with persistent infection develop chronic liver disease, including cirrhosis and hepatocellular carcinoma2. Epidemiological, viral, and host factors have been associated with the differences in HCV clearance or persistence and studies have demonstrated that a strong host immune response against HCV favors viral clearance3,4. Thus, variation in genes involved in the immune response may contribute to the ability to clear the virus. In a recent genome-wide association study, a single nucleotide polymorphism (rs12979860) 3kb upstream of the IL28B gene, which encodes the type III interferon IFN-λ3, was shown to associate strongly with more than a 2-fold difference in response to HCV drug treatment5. To determine the potential effect of rs12979860 variation on outcome to HCV infection in a natural history setting, we genotyped this variant in HCV cohorts comprised of individuals who spontaneously cleared the virus (N = 388) or had persistent infection (N = 620). We show that the C/C genotype strongly enhances resolution of HCV infection amongst individuals of both European and African ancestry (European: OR = 0.38, p = 10−7; African: OR = 0.32, p = 10−4; combined: OR = 0.33, p <10−12). To date, this is the strongest and most significant genetic effect associated with natural clearance of HCV, and these results implicate a primary role for IL28B in resolution of HCV infection.
The chemokine receptor 5 (CKR5) protein serves as a secondary receptor on CD4(+) T lymphocytes for certain strains of human immunodeficiency virus-type 1 (HIV-1). The CKR5 structural gene was mapped to human chromosome 3p21, and a 32-base pair deletion allele (CKR5Delta32) was identified that is present at a frequency of approximately0.10 in the Caucasian population of the United States. An examination of 1955 patients included among six well-characterized acquired immunodeficiency syndrome (AIDS) cohort studies revealed that 17 deletion homozygotes occurred exclusively among 612 exposed HIV-1 antibody-negative individuals (2.8 percent) and not at all in 1343 HIV-1-infected individuals. The frequency of CKR5 deletion heterozygotes was significantly elevated in groups of individuals that had survived HIV-1 infection for more than 10 years, and, in some risk groups, twice as frequent as their occurrence in rapid progressors to AIDS. Survival analysis clearly shows that disease progression is slower in CKR5 deletion heterozygotes than in individuals homozygous for the normal CKR5 gene. The CKR5Delta32 deletion may act as a recessive restriction gene against HIV-1 infection and may exert a dominant phenotype of delaying progression to AIDS among infected individuals.
Natural killer (NK) cells provide a central defense against viral infection by using inhibitory and activation receptors for major histocompatibility complex class I molecules as a means of controlling their activity. We show that genes encoding the inhibitory NK cell receptor KIR2DL3 and its human leukocyte antigen C group 1 (HLA-C1) ligand directly influence resolution of hepatitis C virus (HCV) infection. This effect was observed in Caucasians and African Americans with expected low infectious doses of HCV but not in those with high-dose exposure, in whom the innate immune response is likely overwhelmed. The data strongly suggest that inhibitory NK cell interactions are important in determining antiviral immunity and that diminished inhibitory responses confer protection against HCV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.