The development of facile and versatile strategies for thin-film and particle engineering is of immense scientific interest. However, few methods can conformally coat substrates of different composition, size, shape, and structure. We report the one-step coating of various interfaces using coordination complexes of natural polyphenols and Fe(III) ions. Film formation is initiated by the adsorption of the polyphenol and directed by pH-dependent, multivalent coordination bonding. Aqueous deposition is performed on a range of planar as well as inorganic, organic, and biological particle templates, demonstrating an extremely rapid technique for producing structurally diverse, thin films and capsules that can disassemble. The ease, low cost, and scalability of the assembly process, combined with pH responsiveness and negligible cytotoxicity, makes these films potential candidates for biomedical and environmental applications.
We report the assembly of metal-polyphenol complex (MPC) films and capsules through the sequential deposition of iron(III) ions (Fe(III)) and a natural polyphenol, tannic acid (TA), driven by metal–ligand coordination. Stable Fe(III)/TA films and capsules were formed, indicating lateral and longitudinal cross-linking of TA by Fe(III) in the film structure. Quartz crystal microbalance, ultraviolet–visible (UV-vis) spectrophotometry, and X-ray photoelectron spectroscopy were carried out to quantitatively analyze the film growth. A comparison of the MPC capsules prepared through multistep assembly with those obtained through one-step deposition, as reported previously [Ejima et al., Science 2013, 341, 154–156], reveals substantial differences in the nature of complexation and in their physicochemical properties, including permeability, stiffness, and degradability. This study highlights the importance of engineering MPC films with different properties through implementing different assembly methods.
Super-soft PEG hydrogel particles with tunable elasticity are prepared via a mesoporous silica templating method. The deformability behavior of these particles, in a microfluidic blood-capillary model, can be tailored to be similar to that of human red blood cells. These results provide a new platform for the design and development of soft hydrogel particles for investigating bio-nano interactions.
The growing incidence of skeletal fractures poses a significant challenge to ageing societies. Since a major part of physiological loading in the lower limbs is carried by cortical bone, it would be desirable to better understand the structure-mechanical property relationships and scale effects in this tissue. This study aimed at assessing whether microindentation properties combined with chemical and morphological information are usable to predict macroscopic elastic and strength properties in a donor- and site-matched manner. Specimens for quasi-static macroscopic tests in tension, compression, and torsion and microindentation were prepared from a cohort of 19 male and 20 female donors (46 to 99 years). All tests were performed under fully hydrated conditions. The chemical composition of the extra-cellular matrix was investigated with Raman spectroscopy. The results of the micro-mechanical tests were combined with morphological and compositional properties using a power law relationship to predict the macro-mechanical results. Microindentation properties were not gender dependent, remarkably constant over age, and showed an overall small variation with standard deviations of approximately 10 %. Similar results were obtained for chemical tissue composition. Macro-mechanical stiffness and strength were significantly related to porosity for all load cases (p<0.05). In case of macroscopic yield strain and work-to-failure this was only true in torsion and compression, respectively. The correlations of macro-mechanical with micro-mechanical, morphological, and chemical properties showed no significance for cement line density, mineralisation, or variations in the microindentation results and were dominated by porosity with a moderate explanatory power of predominately less than 50 %. The results confirm that age, with minor exceptions gender, and small variations in average mineralisation have negligible effect on the tissue microindentation properties of human lamellar bone in the elderly. Furthermore, our findings suggest that microindentation experiments are suitable to predict macroscopic mechanical properties in the elderly only on average and not on a one to one basis. The presented data may help to form a better understanding of the mechanisms of ageing in bone tissue and of the length scale at which they are active. This may be used for future prediction of fracture risk in the elderly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.