Currently, the global agricultural system is focused on a limited number of crop species, thereby presenting a threat to food security and supply, especially with predicted global climate change conditions. The importance of ‘underutilized’ crop species in meeting the world’s demand for food has been duly recognized by research communities, governments and policy makers worldwide. The development of underutilized crops, with their vast genetic resources and beneficial traits, may be a useful step towards solving food security challenges by offering a multifaceted agricultural system that includes additional important food resources. Bambara groundnut is among the beneficial underutilized crop species that may have a positive impact on global food security through organized and well-coordinated multidimensional breeding programs. The excessive degrees of allelic difference in Bambara groundnut germplasm could be exploited in breeding activities to develop new varieties. It is important to match recognized breeding objectives with documented diversity in order to significantly improve breeding. This review assesses the genetic diversity of Bambara groundnut, as well as important factors involved in realizing and harnessing the potential of this crop.
Brown planthopper (BPH; Nilaparvata lugens Stal) is considered the main rice insect pest in Asia. Several BPH-resistant varieties of rice have been bred previously and released for large-scale production in various rice-growing regions. However, the frequent surfacing of new BPH biotypes necessitates the evolution of new rice varieties that have a wide genetic base to overcome BPH attacks. Nowadays, with the introduction of molecular approaches in varietal development, it is possible to combine multiple genes from diverse sources into a single genetic background for durable resistance. At present, above 37 BPH-resistant genes/polygenes have been detected from wild species and indica varieties, which are situated on chromosomes 1, 3, 4, 6, 7, 8, 9, 10, 11 and 12. Five BPH gene clusters have been identified from chromosomes 3, 4, 6, and 12. In addition, eight BPH-resistant genes have been successfully cloned. It is hoped that many more resistance genes will be explored through screening of additional domesticated and undomesticated species in due course.
As a new crop in Malaysia, forty-four Bambara groundnut (Vigna subterranea L. verdc.) genotypes were sampled from eleven distinct populations of different origins to explore the genetic structure, genetic inconsistency, and fixation index. The Bambara groundnut, an African underutilized legume, has the capacity to boost food and nutrition security while simultaneously addressing environmental sustainability, food availability, and economic inequalities. A set of 32 ISSRs were screened out of 96 primers based on very sharp, clear, and reproducible bands which detected a total of 510 loci with an average of 97.64% polymorphism. The average calculated value of PIC = 0.243, RP = 5.30, H = 0.285, and MI = 0.675 representing the efficiency of primer set for genetic differentiation among the genotypes. The ISSR primers revealed the number of alleles (Na = 1.97), the effective number of alleles (Ne = 1.38), Nei's genetic diversity (h = 0.248), and a moderate level of gene flow (Nm = 2.26) across the genotypes studied. The estimated Shannon’s information index (I = 0.395) indicates a high level of genetic variation exists among the accessions. Based on Nei’s genetic dissimilarity a UPMGA phylogenetic tree was constructed and grouped the entire genotypes into 3 major clusters and 6 subclusters. PCA analysis revealed that first principal component extracted maximum variation (PC1 = 13.92%) than second principal component (PC2 = 12.59%). Bayesian model-based STRUCTURE analysis assembled the genotypes into 3 (best ΔK = 3) genetic groups. The fixation-index (Fst) analysis narrated a very great genetic diversity (Fst = 0.19 to 0.40) exists within the accessions of these 3 clusters. This investigation specifies the effectiveness of the ISSR primers system for the molecular portrayal of V. subterranea genotypes that could be used for genetic diversity valuation, detection, and tagging of potential genotypes with quick, precise, and authentic measures for this crop improvement through effective breeding schemes.
Bacterial leaf blight caused by Xanthomonas oryzae pv oryzae (Xoo) and blast caused by Magnaporthe oryzae are major diseases responsible for significant yield loss in rice production across all rice growing regions. Host plant resistance has been advocated as a sustainable means of guarding against the diseases. This experiment was conducted with the aim to introgress multiple resistance genes against bacterial leaf blight and blast diseases through marker-assisted backcross breeding. Two dominant (Xa4 and Xa21) and two recessive (xa5 and xa13) Xoo resistance genes were introgressed into a high yielding Malaysian rice variety Putra-1 with genetic background of three blast resistance (Piz, Pi2 and Pi9) genes. Eight polymorphic tightly linked functional and SSR markers were used for foreground selection of target genes. Seventy nine polymorphic SSR markers were used in background selection. The plants were challenged at initial stage of breeding and challenged again at BC2F2 with the most virulent Malaysian pathotypes of Xoo (P7.7) and Magnaporthe oryzae (P7.2) to test their resistance. Results obtained from foreground marker segregation analysis at BC1F1 and BC2F1 showed that the marker polymorphism both fitted into the Mendel’s single gene segregation ratio of 1:1 for both Xoo and blast resistance. At BC2F2, results indicated that foreground marker polymorphism fitted into the expected Mendelian ratio of 1:2:1 for blast resistance only. Marker-assisted background selection revealed high percentage of recurrent parent genome recovery (95.9%). It was concluded that the inheritance of blast resistance in the introgressed lines was mainly due to single gene action while the inheritance of Xoo resistance was substantially due to single nuclear gene action. The incorporation of four bacterial leaf blight and three blast resistance genes (Xa4 + xa5 + xa13 + Xa21; Pi9 + Pi2 + Piz) in the newly developed lines would provide for broad spectrum and durable resistance against the two major diseases studied.
Grafting is regarded as an integral component of sustainable vegetable production. It is important in the management of soil-borne diseases, and reports suggest that grafting with viable rootstocks can enhance crop growth and yield. This research was conducted using splices and cleft grafting techniques to investigate graft compatibility among varieties of high yielding eggplant scion (MCV1, MCV2, CCV1, CCV2, CCV3, NCV, and TCV) grafted onto wild rootstocks (MWR, BWR, and TWR) to study their morphophysiological and yield characteristics. High yielding scions grafted onto wild relative rootstocks were compared with two controls including self-grafted and non-grafted. All the scion had a high rate of germination (≥95%) and remarkable graft success (100%) was recorded in MCV1, MCV2, and TCV using the cleft techniques. Generally, the use of rootstocks resulted in higher total and marketable fruit yield compared to the non-grafted and self-grafted scion plants, respectively. In particular, MWR and TWR rootstock conferred the highest vigour to the scion, resulting in the highest values recorded for total and marketable fruit yield, number of fruits per plant and average fruit weight. A similar result was obtained in fruit length and diameter, where long and wide fruits were observed in scions grafted onto MWR and TWR rootstocks, respectively. Grafting of high yielding eggplant scion onto resistant MWR, BWR and TWR eggplant rootstock was found to be beneficial for eggplant cultivation. The remarkable compatibility and vigour of the rootstock with scion led to the improvement in total and marketable yield of the fruits. As such, it can be concluded that the use of wild relative rootstocks of eggplant species can be a valuable method of improving eggplant production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.