A rapid warming in Himalayas is predicted to increase plant upper distributional limits, vegetation cover and abundance of species adapted to warmer climate. We explored these predictions in NW Himalayas, by revisiting uppermost plant populations after ten years (2003–2013), detailed monitoring of vegetation changes in permanent plots (2009–2012), and age analysis of plants growing from 5500 to 6150 m. Plant traits and microclimate variables were recorded to explain observed vegetation changes. The elevation limits of several species shifted up to 6150 m, about 150 vertical meters above the limit of continuous plant distribution. The plant age analysis corroborated the hypothesis of warming-driven uphill migration. However, the impact of warming interacts with increasing precipitation and physical disturbance. The extreme summer snowfall event in 2010 is likely responsible for substantial decrease in plant cover in both alpine and subnival vegetation and compositional shift towards species preferring wetter habitats. Simultaneous increase in summer temperature and precipitation caused rapid snow melt and, coupled with frequent night frosts, generated multiple freeze-thaw cycles detrimental to subnival plants. Our results suggest that plant species responses to ongoing climate change will not be unidirectional upward range shifts but rather multi-dimensional, species-specific and spatially variable.
Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries
Aim
Temporal dynamics of biodiversity along tropical elevational gradients are unknown. We studied seasonal changes of Lepidoptera biodiversity along the only complete forest elevational gradient in the Afrotropics. We focused on shifts of species richness patterns, seasonal turnover of communities and seasonal shifts of species’ elevational ranges, the latter often serving as an indicator of the global change effects on mountain ecosystems.
Location
Mount Cameroon, Cameroon.
Taxon
Butterflies and moths (Lepidoptera).
Methods
We quantitatively sampled nine groups of Lepidoptera by bait‐trapping (16,800 trap‐days) and light‐catching (126 nights) at seven elevations evenly distributed along the elevational gradient from sea level (30 m a.s.l.) to timberline (2,200 m a.s.l.). Sampling was repeated in three seasons.
Results
Altogether, 42,936 specimens of 1,099 species were recorded. A mid‐elevation peak of species richness was detected for all groups but Eupterotidae. This peak shifted seasonally for five groups, most of them ascending during the dry season. Seasonal shifts of species’ elevational ranges were mostly responsible for these diversity pattern shifts along elevation: we found general upward shifts in fruit‐feeding butterflies, fruit‐feeding moths and Lymantriinae from beginning to end of the dry season. Contrarily, Arctiinae shifted upwards during the wet season. The average seasonal shifts of elevational ranges often exceeded 100 m and were even several times higher for numerous species.
Main conclusions
We report seasonal uphill and downhill shifts of several lepidopteran groups. The reported shifts can be driven by both delay in weather seasonality and shifts in resource availability, causing phenological delay of adult hatching and/or adult migrations. Such shifts may lead to misinterpretations of diversity patterns along elevation if seasonality is ignored. More importantly, considering the surprising extent of seasonal elevational shifts of species, we encourage taking account of such natural temporal dynamics while investigating the global climate change impact on communities of Lepidoptera in tropical mountains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.