Background To investigate whether magnetic resonance (MR) radiomic features combined with machine learning may aid in predicting extraprostatic extension (EPE) in high- and non-favorable intermediate-risk patients with prostate cancer. Purpose To investigate the diagnostic performance of radiomics to detect EPE. Material and Methods MR radiomic features were extracted from 228 patients, of whom 86 were diagnosed with EPE, using prostate and lesion segmentations. Prediction models were built using Random Forest. Further, EPE was also predicted using a clinical nomogram and routine radiological interpretation and diagnostic performance was assessed for individual and combined models. Results The MR radiomic model with features extracted from the manually delineated lesions performed best among the radiomic models with an area under the curve (AUC) of 0.74. Radiology interpretation yielded an AUC of 0.75 and the clinical nomogram (MSKCC) an AUC of 0.67. A combination of the three prediction models gave the highest AUC of 0.79. Conclusion Radiomic analysis combined with radiology interpretation aid the MSKCC nomogram in predicting EPE in high- and non-favorable intermediate-risk patients.
PurposeTo improve preoperative risk stratification for prostate cancer (PCa) by incorporating multiparametric MRI (mpMRI) features into risk stratification tools for PCa, CAPRA and D’Amico.Methods807 consecutive patients operated on by robot-assisted radical prostatectomy at our institution during the period 2010–2015 were followed to identify biochemical recurrence (BCR). 591 patients were eligible for final analysis. We employed stepwise backward likelihood methodology and penalised Cox cross-validation to identify the most significant predictors of BCR including mpMRI features. mpMRI features were then integrated into image-adjusted (IA) risk prediction models and the two risk prediction tools were then evaluated both with and without image adjustment using receiver operating characteristics, survival and decision curve analyses.Results37 patients suffered BCR. Apparent diffusion coefficient (ADC) and radiological extraprostatic extension (rEPE) from mpMRI were both significant predictors of BCR. Both IA prediction models reallocated more than 20% of intermediate-risk patients to the low-risk group, reducing their estimated cumulative BCR risk from approximately 5% to 1.1%. Both IA models showed improved prognostic performance with a better separation of the survival curves.ConclusionIntegrating ADC and rEPE from mpMRI of the prostate into risk stratification tools improves preoperative risk estimation for BCR.Key points• MRI-derived features, ADC and EPE, improve risk stratification of biochemical recurrence.
• Using mpMRI to stratify prostate cancer patients improves the differentiation between risk groups.
• Using preoperative mpMRI will help urologists in selecting the most appropriate treatment.
Electronic supplementary materialThe online version of this article (10.1007/s00330-017-5031-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.