Species of the Bos genus, including taurine cattle, zebu, gayal, gaur, banteng, yak, wisent and bison, have been domesticated at least four times and have been an important source of meat, milk and power for many human cultures. We sequence the genomes of gayal, gaur, banteng, wisent and bison, and provide population genomic sequencing of an additional 98 individuals. We use these data to determine the phylogeny and evolutionary history of these species and show that the threatened gayal is an independent species or subspecies. We show that there has been pronounced introgression among different members of this genus, and that it in many cases has involved genes of considerable adaptive importance. For example, genes under domestication selection in cattle (for example, MITF) were introgressed from domestic cattle to yak. Also, genes in the response-to-hypoxia pathway (for example, EGLN1, EGLN2 and HIF3a) have been introgressed from yak to Tibetan cattle, probably facilitating their adaptation to high altitude. We also validate that there is an association between the introgressed EGLN1 allele and haemoglobin and red blood cell concentration. Our results illustrate the importance of introgression as a source of adaptive variation and during domestication, and suggest that the Bos genus evolves as a complex of genetically interconnected species with shared evolutionary trajectories.
The European bison (Bison bonasus) has recovered successfully after a severe bottleneck about 90 years ago but has been left with low genetic variability that may substantially hinder parentage and identity analysis. According to pedigree analysis, over 80% of the genes in the contemporary population descend from just two founder animals and inbreeding coefficients averaged almost 0.5, whereas microsatellite heterozygosity does not exceed 0.3. We present a comparison of the effectiveness of 17 microsatellite and 960 single nucleotide polymorphism (SNP) markers for paternity and identity analysis in the European bison. Microsatellite-based paternity and identity analysis was unsuccessful because of low marker heterozygosity and is not a practical approach in this species. Simulations using SNP markers suggest that 80-90 randomly selected loci, or just 50-60 of the most heterozygous loci, would be sufficient to ensure successful paternity and identity analysis in this species. For the purpose of standardizing future analysis, a panel of 50-60 bovine SNPs characterized by high heterozygosity and an even distribution in the genome could be selected. This panel of markers could be typed using VeraCode (Illumina) or similar SNP genotyping systems. The low cost of these SNP genotyping methods compared with a 16 locus microsatellite survey means that off-the-shelf SNP genotyping systems developed for domestic species represent powerful tools for genetic analysis in related species, and can be effective even in bottlenecked species in which heterozygosity of other markers such as microsatellites may be very low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.