Kongsfjorden is a glacial fjord in the Arctic (Svalbard) that is influenced by both Atlantic and Arctic water masses and harbours a mixture of boreal and Arctic flora and fauna. Inputs from large tidal glaciers create steep environmental gradients in sedimentation and salinity along the length of this fjord. The glacial inputs cause reduced biomass and diversity in the benthic community in the inner fjord. Zooplankton suffers direct mortality from the glacial outflow and primary production is reduced because of limited light levels in the turbid, mixed inner waters. The magnitude of the glacial effects diminishes towards the outer fjord. Kongsfjorden is an important feeding ground for marine mammals and seabirds. Even though the fjord contains some boreal fauna, the prey consumed by upper trophic levels is mainly Arctic organisms. Marine mammals constitute the largest top‐predator biomass, but seabirds have the largest energy intake and also export nutrients and energy out of the marine environment. Kongsfjorden has received a lot of research attention in the recent past. The current interest in the fjord is primarily based on the fact that Kongsfjorden is particularly suitable as a site for exploring the impacts of possible climate changes, with Atlantic water influx and melting of tidal glaciers both being linked to climate variability. The pelagic ecosystem is likely to be most sensitive to the Atlantic versus Arctic influence, whereas the benthic ecosystem is more affected by long‐term changes in hydrography as well as changes in glacial runoff and sedimentation. Kongsfjorden will be an important Arctic monitoring site over the coming decades and a review of the current knowledge, and a gap analysis, are therefore warranted. Important knowledge gaps include a lack of quantitative data on production, abundance of key prey species, and the role of advection on the biological communities in the fjord.
The current understanding of Arctic ecosystems is deeply rooted in the classical view of a bottom-up controlled system with strong physical forcing and seasonality in primary-production regimes. Consequently, the Arctic polar night is commonly disregarded as a time of year when biological activities are reduced to a minimum due to a reduced food supply. Here, based upon a multidisciplinary ecosystem-scale study from the polar night at 79°N, we present an entirely different view. Instead of an ecosystem that has entered a resting state, we document a system with high activity levels and biological interactions across most trophic levels. In some habitats, biological diversity and presence of juvenile stages were elevated in winter months compared to the more productive and sunlit periods. Ultimately, our results suggest a different perspective regarding ecosystem function that will be of importance for future environmental management and decision making, especially at a time when Arctic regions are experiencing accelerated environmental change [1].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.