The continuous tribological development of engine lubricants is becoming more and more vital due to its fuel efficiency improvement and lifetime increasing potential. The antiwear additives play a high role in the lubricants to protect the contacting surfaces even in the presence of thinner oil film. Nanoscale spherical particles in the lubricant may increase the necessary protecting effect. This paper presents the results of the experimental tribological investigation of nanoscale spherical Y2O3 (yttria) ceramic particles as an engine lubricant additive. The ball-on-disc tribological measurements have revealed an optimum concentration at 0.5 wt% with about 45% wear scar diameter and 90% wear volume decrease, compared to the reference, neat Group III base oil. The high-magnitude SEM analysis revealed the working mechanisms of yttria: the particles collected in the roughness valleys resulted in a smoother contacting surface, they were tribo-sintered and they have also caused slight plastic deformation of the outer layer of the metallic surface.
Due to the continuously increasing requirements of the internal combustion engines, the lubricants and their additives have to be further developed. One possible solution is the application of ceramic nanoparticles as friction modifier and wear decreaser additives. This paper presents the tribological investigation of cupricoxide (CuO) nanoparticle mixed in neat Group 3 base oil. To analyse its properties, simplified ball-on-disc friction experiments were carried out in the tribological laboratory in the Széchenyi István University in Győr, Hungary. The arisen wear scars were analysed with different, highresolution microscopes to understand the working mechanism of the nanoparticles. The results have indicated an optimum concentration of nanoparticles at 0.5wt% where both the average friction coefficient and the wear scar diameter were reduced by 15%. The microscopical investigation revealed the reduction of copper material from the CuO material, and it has mended to the rubbing surface forming a protective film on the metal surface.
Engine oil condition and tribological performance are strongly interrelated. Accordingly, oil condition monitoring is common in various applications. This is especially important, as oil condition depends on the fueling and utilization profile of an internal combustion engine. Common practice involves the measurement of various parameters, such as the total acid number and total base number, oxidation, nitration, viscosity, and elemental composition; thus, it can be time-consuming and resource-intensive. This study provides a methodology for rapid analysis for large vehicle fleets or sample sizes, using only Fourier-transformed infrared spectroscopy and the subsequent multivariate data analysis offers a rapid alternative to commonly available methods. The described method provides a rapid, cost-efficient, and intuitive approach to uncovering differences in the oil condition. Furthermore, understanding the underlying reasons in engine construction and the resulting chemical degradation is also possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.