The NASA Soil Moisture Active Passive (SMAP) mission Level‐4 Soil Moisture (L.4_SM) product provides global, 3‐hourly, 9‐km resolution estimates of surface (0–5 cm) and root zone (0–100 cm) soil moisture with a mean latency of ~2.5 days. The underlying L4_SM algorithm assimilates SMAP radiometer brightness temperature (Tb) observations into the NASA Catchment land surface model using a spatially distributed ensemble Kalman filter. In Version 4 of the L4_SM modeling system the upward recharge of surface soil moisture from below under nonequilibrium conditions was reduced, resulting in less bias and improved dynamic range of L4_SM surface soil moisture compared to earlier versions. This change and additional technical modifications to the system reduce the mean and standard deviation of the observation‐minus‐forecast Tb residuals and overall soil moisture analysis increments while maintaining the skill of the L4_SM soil moisture estimates versus independent in situ measurements; the average, bias‐adjusted root‐mean‐square error in Version 4 is 0.039 m3/m3 for surface and 0.026 m3/m3 for root zone soil moisture. Moreover, the coverage of assimilated SMAP observations in Version 4 is near global owing to the use of additional satellite Tb records for algorithm calibration. L4_SM soil moisture uncertainty estimates are biased low (by 0.01–0.02 m3/m3) against actual errors (computed versus in situ measurements). L4_SM runoff estimates, an additional product of the L4_SM algorithm, are biased low (by 35 mm/year) against streamflow measurements. Compared to Version 3, bias in Version 4 is reduced by 46% for surface soil moisture uncertainty estimates and by 33% for runoff estimates.
The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0–5 cm) and root-zone (0–100 cm) soil moisture and related land surface variables from 31 March 2015 to present with ~2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O − F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of ~0.37 K for the O − F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O − F residuals (under ~3 K), the soil moisture increments (under ~0.01 m3 m−3), and the surface soil temperature increments (under ~1 K). Typical instantaneous values are ~6 K for O − F residuals, ~0.01 (~0.003) m3 m−3 for surface (root zone) soil moisture increments, and ~0.6 K for surface soil temperature increments. The O − F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O − F autocorrelations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.