Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID -INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroidrelated genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.
Brassinosteroids (BR) are steroid phytohormones that are involved in the growth and stress response in plants, but the precise mechanisms of their action are still being discovered. In our study we have used BR-deficient barley mutants 522DK and BW084 (which carry missense mutations in the HvDWARF and HvCPD genes, respectively). We have also used a BR-signalling mutant that harbors missense substitutions in the HvBRI1 gene. Our aim was (1) to find out if the content of phytohormones in the mutants grown at 20 °C is different than in the wild types and whether/how the content of phytohormones changes after plant acclimation at temperatures of 5 °C and 27 °C?, (2) to characterise the effectiveness of the light reactions of photosynthesis of the barley mutants in comparison to wild types at various temperatures, and (3) to verify the impact of mutations on the tolerance of barley to high and low temperatures. Hormonal characteristics of the BR mutants of barley show the complexity of the interactions between BR and other plant hormones that are additionally modified by temperature and possibly by other factors. The results suggest the participation of BR in auxin catabolism. Further, BR appears to play a role in maintaining the ABA-ABAGlc balance. As for the gibberellin content in plants at a temperature of 20 °C, more in-depth studies will be required to explain the contradictory effects regarding the accumulation of GA3, GA4 and GA5, which appears to be dependent on the type of mutation and connected to the BR level. A fast-kinetic chlorophyll a fluorescence analysis has revealed that the mutants had lower values of energy absorption than the wild types, but the values of the energy transferred via the electron-transport chain was maintained at the wild-type level. We presumed that BR are involved in regulating plant acclimation to extreme (low/high) temperatures, thus the BR-deficient and BR-signalling mutants should be less tolerant to low/high temperatures when compared to the wild types. Unexpectedly, all of the mutants showed a higher tolerance to high temperatures than the wild types. The BW084 and BW312 mutants were less tolerant to frost than the wild type, but 522DK had a similar frost tolerance as the reference wild-type cultivar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.