Summary Background Dengue virus is the most serious mosquito-borne viral threat to public health and no vaccines or antiviral therapies are approved for dengue fever. The tetravalent DENVax vaccine contains a molecularly characterised live attenuated dengue serotype-2 virus (DENVax-2) and three recombinant vaccine viruses expressing the prM and E structural genes for serotypes 1, 3, and 4 in the DENVax-2 genetic backbone. We aimed to assess the safety and immunogenicity of tetravalent DENVax formulations. Methods We undertook a randomised, double-blind, phase 1, dose-escalation trial between Oct 11, 2011, and Nov 9, 2011, in the Rionegro, Antioquia, Colombia. The first cohort of participants (aged 18–45 years) were randomly assigned centrally, via block randomisation, to receive a low-dose formulation of DENvax, or placebo, by either subcutaneous or intradermal administration. After a safety assessment, participants were randomly assigned to receive a high-dose DENVax formulation, or placebo, by subcutaneous or intradermal administration. Group assignment was not masked from study pharmacists, but allocation was concealed from participants, nurses, and investigators. Primary endpoints were frequency and severity of injection-site and systemic reactions within 28 days of each vaccination. Secondary endpoints were the immunogenicity of DENVax against all four dengue virus serotypes, and the viraemia due to each of the four vaccine components after immunisation. Analysis was by intention to treat for safety and per protocol for immunogenicity. Because of the small sample size, no detailed comparison of adverse event rates were warranted. The trial is registered with ClinicalTrials.gov, number NCT01224639. Findings We randomly assigned 96 patients to one of the four study groups: 40 participants (42%) received low-dose vaccine and eight participants (8%) received placebo in the low-dose groups; 39 participants (41%) received high-dose vaccine, with nine (9%) participants assigned to receive placebo. Both formulations were well tolerated with mostly mild and transient local or systemic reactions. No clinically meaningful differences were recorded in the overall incidence of local and systemic adverse events between patients in the vaccine and placebo groups; 68 (86%) of 79 participants in the vaccine groups had solicited systemic adverse events compared with 13 (76%) of 17 of those in the placebo groups. By contrast, 67 participants (85%) in the vaccine group had local solicited reactions compared with five (29%) participants in the placebo group. Immunisation with either high-dose or low-dose DENVax formulations induced neutralising antibody responses to all four dengue virus serotypes; 30 days after the second dose, 47 (62%) of 76 participants given vaccine seroconverted to all four serotypes and 73 (96%) participants seroconverted to three or more dengue viruses. Infectious DENVax viruses were detected in only ten (25%) of 40 participants in the low-dose group and 13 (33%) of 39 participants in the high-dose ...
IMPORTANCEAs self-collected home antigen tests become widely available, a better understanding of their performance during the course of SARS-CoV-2 infection is needed. OBJECTIVE To evaluate the diagnostic performance of home antigen tests compared with reverse transcription-polymerase chain reaction (RT-PCR) and viral culture by days from illness onset, as well as user acceptability. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study was conducted from January to May 2021 in San Diego County, California, and metropolitan Denver, Colorado. The convenience sample included adults and children with RT-PCR-confirmed infection who used self-collected home antigen tests for 15 days and underwent at least 1 nasopharyngeal swab for RT-PCR, viral culture, and sequencing. EXPOSURES SARS-CoV-2 infection. MAIN OUTCOMES AND MEASURES The primary outcome was the daily sensitivity of home antigen tests to detect RT-PCR-confirmed cases. Secondary outcomes included the daily percentage of antigen test, RT-PCR, and viral culture results that were positive, and antigen test sensitivity compared with same-day RT-PCR and cultures. Antigen test use errors and acceptability were assessed for a subset of participants. RESULTS This study enrolled 225 persons with RT-PCR-confirmed infection (median [range] age, 29 [1-83] years; 117 female participants [52%]; 10 [4%] Asian, 6 [3%] Black or African American, 50 [22%] Hispanic or Latino, 3 [1%] Native Hawaiian or Other Pacific Islander, 145[64%] White, and 11 [5%] multiracial individuals) who completed 3044 antigen tests and 642 nasopharyngeal swabs. Antigen test sensitivity was 50% (95% CI, 45%-55%) during the infectious period, 64% (95% CI, 56%-70%) compared with same-day RT-PCR, and 84% (95% CI, 75%-90%) compared with same-day cultures. Antigen test sensitivity peaked 4 days after illness onset at 77% (95% CI, 69%-83%). Antigen test sensitivity improved with a second antigen test 1 to 2 days later, particularly early in the infection. Six days after illness onset, antigen test result positivity was 61% (95% CI, 53%-68%). Almost all (216 [96%]) surveyed individuals reported that they would be more likely to get tested for SARS-CoV-2 infection if home antigen tests were available over the counter. CONCLUSIONS AND RELEVANCEThe results of this cohort study of home antigen tests suggest that sensitivity for SARS-CoV-2 was moderate compared with RT-PCR and high compared with viral culture. The results also suggest that symptomatic individuals with an initial negative home antigen test result for SARS-CoV-2 infection should test again 1 to 2 days later because test sensitivity peaked several days after illness onset and improved with repeated testing.
O'nyong nyong virus (ONNV) and Chikungunya virus (CHIKV) are two closely related alphaviruses with very different infection patterns in the mosquito, Anopheles gambiae. ONNV is the only alphavirus transmitted by anopheline mosquitoes, but specific molecular determinants of infection of this unique vector specificity remain unidentified. Fifteen distinct chimeric viruses were constructed to evaluate both structural and non-structural regions of the genome and infection patterns were determined through artificial infectious feeds in An. gambiae with each of these chimeras. Only one region, non-structural protein 3 (nsP3), was sufficient to up-regulate infection to rates similar to those seen with parental ONNV. When ONNV non-structural protein 3 (nsP3) replaced nsP3 from CHIKV virus in one of the chimeric viruses, infection rates in An. gambiae went from 0% to 63.5%. No other single gene or viral region addition was able to restore infection rates. Thus, we have shown that a non-structural genome element involved in viral replication is a major element involved in ONNV's unique vector specificity.
BackgroundWe have developed a manufacturing strategy that can improve the safety and genetic stability of recombinant live-attenuated chimeric dengue vaccine (DENVax) viruses. These viruses, containing the pre-membrane (prM) and envelope (E) genes of dengue serotypes 1–4 in the replicative background of the attenuated dengue-2 PDK-53 vaccine virus candidate, were manufactured under cGMP.Methodology/Principal FindingsAfter deriving vaccine viruses from RNA-transfected Vero cells, six plaque-purified viruses for each serotype were produced. The plaque-purified strains were then analyzed to select one stock for generation of the master seed. Full genetic and phenotypic characterizations of the master virus seeds were conducted to ensure these viruses retained the previously identified attenuating determinants and phenotypes of the vaccine viruses. We also assessed vector competence of the vaccine viruses in sympatric (Thai) Aedes aegypti mosquito vectors.Conclusion/SignificanceAll four serotypes of master vaccine seeds retained the previously defined safety features, including all three major genetic loci of attenuation, small plaques, temperature sensitivity in mammalian cells, reduced replication in mosquito cell cultures, and reduced neurovirulence in new-born mice. In addition, the candidate vaccine viruses demonstrated greatly reduced infection and dissemination in Aedes aegypti mosquitoes, and are not likely to be transmissible by these mosquitoes. This manufacturing strategy has successfully been used to produce the candidate tetravalent vaccine, which is currently being tested in human clinical trials in the United States, Central and South America, and Asia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.