There remain no clear guidelines for the optimal management of patients with metastatic breast cancer. To better understand its natural history, we undertook a detailed examination of 197 autopsies performed on women who died of breast cancer. We reviewed clinical, treatment and pathological aspects of all cases and, additionally, pathological features and biomarker expression (ER, PgR, HER2, EGFR, p53, Ki67, c-Kit, CK AE1/AE3) were assessed in detail for the primary tumour and matched metastases for 55 of the cases. Genomes of the primary tumour and multiple metastases were analysed by array-based comparative genomic hybridization for six cases##. 945 metastatic deposits were identified, with a median of four/patient. The most common organs involved were lung/pleura (80%), bone (74%), liver (71%) and non-axillary lymph nodes (55%). Major findings included: (a) patients with CNS metastases were more likely to have bone metastases (p < 0.013); (b) younger age was associated with metastasis to the liver (≤ 49 years; p < 0.001) and to gynaecological organs (≤ 49 years; p = 0.001); (c) surgical excision of the primary tumour was associated with metastasis to the liver (p = 0.002); and (d) ER and PgR showed down-regulation during progression in a non-random manner, particularly in lung/pleura (ER; p < 0.001), liver and bone metastases. Genomic analysis revealed DNA copy number variation between the primary tumour and metastases (e.g. amplification of 2q11.2–q12.1 and 10q22.2–q22.3) but little variation between metastases from the same patient. In summary, the association of CNS and bone metastases, liver and gynaecological metastases in young women and the risk of liver metastases following surgery have important implications for the management of patients with breast cancer. Clonal heterogeneity of the primary tumour is important in developing metastatic propensity and the change in tumour phenotype during progression/colonization highlights the importance of sampling metastatic disease for optimal treatment strategies. © 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Microglandular adenosis (MGA) is an uncommon, benign breast lesion that is characterized by a proliferation of small uniform, round glands lined by a single layer of epithelial cells around open lumina with haphazard infiltrative growth in fibrous and fatty breast tissue. Although MGA usually has an indolent course, there is morphologic evidence that MGA can be a precursor for the development of intraductal and invasive ductal carcinoma. To investigate the possibility of such a transition, we studied 17 cases of MGA or atypical MGA some of which had given rise to carcinoma in situ (CIS) and/or invasive ductal carcinoma using the reticulin stain, immunohistochemistry (S-100, p63, Ki-67, and p53), and a molecular approach involving microdissection and high-resolution comparative genomic hybridization and MYC chromogenic in situ hybridization. MGA and carcinomas arising from MGA were typically negative for p63 and positive for S-100 and Ki-67 and occasionally positive for p53. High-resolution comparative genomic hybridization identified recurrent gains and losses in MGA (2q+, 5q-, 8q+, and 14q-) and atypical MGA (1q+, 5q-, 8q+, 14q-, and 15q-). Some examples of MGA and carcinomas arising from MGA harbored few gross chromosomal abnormalities whereas others had considerable genetic instability with widespread aberrations affecting numerous chromosomal arms. Such widespread genetic changes, together with recurrent loss of 5q and gain of 8q were reminiscent of those reported specifically for basal-like, estrogen receptor-negative, and BRCA1-associated breast tumors. Concordant genetic alterations were identified between MGA, atypical MGA, and higher risk lesions (CIS and invasive ductal carcinoma) and in some cases there was an accumulation of genetic alterations as cases "progressed" from MGA to atypical MGA, CIS, and invasive ductal carcinoma. The molecular data suggests that MGA, atypical MGA, and carcinoma arising in MGA in a single case were clonally related. This result implicates MGA as a nonobligate precursor for the development of intraductal and invasive ductal carcinoma.
Mixed ductal–lobular carcinomas (MDLs) show both ductal and lobular morphology, and constitute an archetypal example of intratumoural morphological heterogeneity. The mechanisms underlying the coexistence of these different morphological entities are poorly understood, although theories include that these components either represent ‘collision’ of independent tumours or evolve from a common ancestor. We performed comprehensive clinicopathological analysis of a cohort of 82 MDLs, and found that: (1) MDLs more frequently coexist with ductal carcinoma in situ (DCIS) than with lobular carcinoma in situ (LCIS); (2) the E‐cadherin–catenin complex was normal in the ductal component in 77.6% of tumours; and (3) in the lobular component, E‐cadherin was almost always aberrantly located in the cytoplasm, in contrast to invasive lobular carcinoma (ILC), where E‐cadherin is typically absent. Comparative genomic hybridization and multiregion whole exome sequencing of four representative cases revealed that all morphologically distinct components within an individual case were clonally related. The mutations identified varied between cases; those associated with a common clonal ancestry included BRCA2, TBX3, and TP53, whereas those associated with clonal divergence included CDH1 and ESR1. Together, these data support a model in which separate morphological components of MDLs arise from a common ancestor, and lobular morphology can arise via a ductal pathway of tumour progression. In MDLs that present with LCIS and DCIS, the clonal divergence probably occurs early, and is frequently associated with complete loss of E‐cadherin expression, as in ILC, whereas, in the majority of MDLs, which present with DCIS but not LCIS, direct clonal divergence from the ductal to the lobular phenotype occurs late in tumour evolution, and is associated with aberrant expression of E‐cadherin. The mechanisms driving the phenotypic change may involve E‐cadherin–catenin complex deregulation, but are yet to be fully elucidated, as there is significant intertumoural heterogeneity, and each case may have a unique molecular mechanism. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Pathology archives contain vast resources of clinical material in the form of formalin-fixed paraffin-embedded (FFPE) tissue samples. Owing to the methods of tissue fixation and storage, the integrity of DNA and RNA available from FFPE tissue is compromized, which means obtaining informative data regarding epigenetic, genomic, and expression alterations can be challenging. Here, we have investigated the utility of repairing damaged DNA derived from FFPE tumors prior to single-nucleotide polymorphism (SNP) arrays for whole-genome DNA copy number analysis. DNA was extracted from FFPE samples spanning five decades, involving tumor material obtained from surgical specimens and postmortems. Various aspects of the protocol were assessed, including the method of DNA extraction, the role of Quality Control quantitative PCR (qPCR) in predicting sample success, and the effect of DNA restoration on assay performance, data quality, and the prediction of copy number aberrations (CNAs). DNA that had undergone the repair process yielded higher SNP call rates, reduced log R ratio variance, and improved calling of CNAs compared with matched FFPE DNA not subjected to repair. Reproducible mapping of genomic break points and detection of focal CNAs representing highlevel gains and homozygous deletions (HD) were possible, even on autopsy material obtained in 1974. For example, DNA amplifications at the ERBB2 and EGFR gene loci and a HD mapping to 13q14.2 were validated using immunohistochemistry, in situ hybridization, and qPCR. The power of SNP arrays lies in the detection of allele-specific aberrations; however, this aspect of the analysis remains challenging, particularly in the distinction between loss of heterozygosity (LOH) and copy neutral LOH. In summary, attempting to repair DNA that is damaged during fixation and storage may be a useful pretreatment step for genomic studies of large archival FFPE cohorts with long-term follow-up or for understanding rare cancer types, where fresh frozen material is scarce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.