Quantitative PCR (qPCR) is more sensitive than microscopy for detecting Pneumocystis jirovecii in bronchoalveolar lavage (BAL) fluid. We therefore developed a qPCR assay and compared the results with those of a routine immunofluorescence assay (IFA) and clinical data. The assay included automated DNA extraction, amplification of the mitochondrial large-subunit rRNA gene and an internal control, and quantification of copy numbers with the help of a plasmid clone. We studied 353 consecutive BAL fluids obtained for investigation of unexplained fever and/or pneumonia in 287 immunocompromised patients. No qPCR inhibition was observed. Seventeen (5%) samples were both IFA and qPCR positive, 63 (18%) were IFA negative and qPCR positive, and 273 (77%) were both IFA and qPCR negative. The copy number was significantly higher for IFA-positive/qPCR-positive samples than for IFA-negative/qPCR-positive samples (4.2 ؎ 1.2 versus 1.1 ؎ 1.1 log 10 copies/l; P < 10 ؊4 ). With IFA as the standard, the qPCR assay sensitivity was 100% for >2.6 log 10 copies/l and the specificity was 100% for >4 log 10 copies/l. Since qPCR results were not available at the time of decision-making, these findings did not trigger cotrimoxazole therapy. Patients with systemic inflammatory diseases and IFA-negative/qPCR-positive BAL fluid had a worse 1-year survival rate than those with IFA-negative/qPCR-negative results (P < 10 ؊3 ), in contrast with solid-organ transplant recipients (P ؍ 0.88) and patients with hematological malignancy (P ؍ 0.26). Quantifying P. jirovecii DNA in BAL fluids independently of IFA positivity should be incorporated into the investigation of pneumonia in immunocompromised patients. The relevant threshold remains to be determined and may vary according to the underlying disease.
BackgroundBiofilms are communal structures of microorganisms that have long been associated with a variety of persistent infections poorly responding to conventional antibiotic or antifungal therapy. Aspergillus fumigatus fungus and Stenotrophomonas maltophilia bacteria are examples of the microorganisms that can coexist to form a biofilm especially in the respiratory tract of immunocompromised patients or cystic fibrosis patients. The aim of the present study was to develop and assess an in vitro model of a mixed biofilm associating S. maltophilia and A. fumigatus by using analytical and quantitative approaches.Materials and MethodsAn A. fumigatus strain (ATCC 13073) expressing a Green Fluorescent Protein (GFP) and an S. maltophilia strain (ATCC 13637) were used. Fungal and bacterial inocula (105 conidia/mL and 106 cells/mL, respectively) were simultaneously deposited to initiate the development of an in vitro mixed biofilm on polystyrene supports at 37°C for 24 h. The structure of the biofilm was analysed via qualitative microscopic techniques like scanning electron and transmission electron microscopy, and fluorescence microscopy, and by quantitative techniques including qPCR and crystal violet staining.ResultsAnalytic methods revealed typical structures of biofilm with production of an extracellular matrix (ECM) enclosing fungal hyphae and bacteria. Quantitative methods showed a decrease of A. fumigatus growth and ECM production in the mixed biofilm with antibiosis effect of the bacteria on the fungi seen as abortive hyphae, limited hyphal growth, fewer conidia, and thicker fungal cell walls.ConclusionFor the first time, a mixed A. fumigatus—S. maltophilia biofilm was validated by various analytical and quantitative approaches and the bacterial antibiosis effect on the fungus was demonstrated. The mixed biofilm model is an interesting experimentation field to evaluate efficiency of antimicrobial agents and to analyse the interactions between the biofilm and the airways epithelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.