Preparedness for a possible influenza pandemic caused by highly pathogenic avian influenza A subtype H5N1 has become a global priority. The spread of the virus to Europe and continued human infection in Southeast Asia have heightened pandemic concern. It remains unknown from where the pandemic strain may emerge; current attention is directed at Vietnam, Thailand, and, more recently, Indonesia and China. Here, we report that genetically and antigenically distinct sublineages of H5N1 virus have become established in poultry in different geographical regions of Southeast Asia, indicating the long-term endemicity of the virus, and the isolation of H5N1 virus from apparently healthy migratory birds in southern China. Our data show that H5N1 influenza virus, has continued to spread from its established source in southern China to other regions through transport of poultry and bird migration. The identification of regionally distinct sublineages contributes to the understanding of the mechanism for the perpetuation and spread of H5N1, providing information that is directly relevant to control of the source of infection in poultry. It points to the necessity of surveillance that is geographically broader than previously supposed and that includes H5N1 viruses of greater genetic and antigenic diversity. genetics ͉ human ͉ influenza A ͉ virus evolution ͉ avian
influenza A ͉ molecular epidemiology ͉ virus evolution
Highly pathogenic avian influenza virus H5N1 is endemic in poultry in East and Southeast Asia with disease outbreaks recently spreading to parts of central Asia, Europe and Africa. Continued interspecies transmission to humans has been reported in Vietnam, Thailand, Cambodia, Indonesia and China, causing pandemic concern. Here, we genetically characterize 82 H5N1 viruses isolated from poultry throughout Indonesia and Vietnam and 11 human isolates from southern Vietnam together with sequence data available in public databases to address questions relevant to virus introduction, endemicity and evolution. Phylogenetic analysis shows that all viruses from Indonesia form a distinct sublineage of H5N1 genotype Z viruses suggesting this outbreak likely originated from a single introduction that spread throughout the country during the past two years. Continued virus activities in Indonesia were attributed to transmission via poultry movement within the country rather than through repeated introductions by bird migration. Within Indonesia and Vietnam, H5N1 viruses have evolved over time into geographically distinct groups within each country. Molecular analysis of the H5N1 genotype Z genome shows that only the M2 and PB1-F2 genes were under positive selection, suggesting that these genes might be involved in adaptation of this virus to new hosts following interspecies transmission. At the amino acid level 12 residues were under positive selection in those genotype Z viruses, in the HA and PB1-F2 proteins. Some of these residues were more frequently observed in human isolates than in avian isolates and are related to viral antigenicity and receptor binding. Our study provides insight into the ongoing evolution of H5N1 influenza viruses that are transmitting in diverse avian species and at the interface between avian and human hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.