Purpose Pancreatic ductal adenocarcinoma (PDAC) is characterized by high levels of fibrosis, termed desmoplasia, which is thought to hamper the efficacy of therapeutics treating PDAC. Our primary focus was to evaluate differences in the extent of desmoplasia in primary tumors and metastatic lesions. As metastatic burden is a primary cause for mortality in PDAC, the extent of desmoplasia in metastases may help to determine whether desmoplasia targeting therapeutics will benefit patients with late stage, metastatic disease. Experimental Design We sought to assess desmoplasia in metastatic lesions of PDAC and compare it to that of primary tumors. Fifty three patients’ primaries and fifty seven patients’ metastases were stained using immunohistochemical staining techniques. Results We observed a significant negative correlation between patient survival and extracellular matrix deposition in primary tumors. Kaplan-meier curves for Collagen I showed median survival of 14.6 months in low collagen patients, and 6.4 months in high level patients (log rank, P<0.05). Low level hyaluronan patients displayed median survival times of 24.3 months as compared to 9.3 months in high level patients (log rank, P<0.05). Our analysis also indicated that extracellular matrix components, such as collagen and hyaluronan, are found in high levels in both primary tumors and metastatic lesions. The difference in the level of desmoplasia between primary tumors and metastatic lesions was not statistically significant. Conclusion Our results suggest that both primary tumors and metastases of PDAC have highly fibrotic stroma. Thus, stromal targeting agents have the potential to benefit PDAC patients, even those with metastatic disease.
SUMMARY Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification.
Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations.
DLC1 encodes a RhoA GTPase-activating protein and tumor suppressor lost in cancer by genomic deletion or epigenetic silencing and loss of DLC1 gene transcription. We unexpectedly identified nonsmall cell lung cancer (NSCLC) cell lines and tumor tissue that expressed DLC1 mRNA yet lacked DLC1 protein expression. We determined that DLC1 was ubiquitinated and degraded by cullin 4A-RING ubiquitin ligase (CRL4A) complex interaction with DDB1 and the FBXW5 substrate receptor. siRNA-mediated suppression of cullin 4A, DDB1, or FBXW5 expression restored DLC1 protein expression in NSCLC cell lines. FBXW5 suppression-induced DLC1 reexpression was associated with a reduction in the levels of activated RhoA-GTP and in RhoA effector signaling. Finally, FBXW5 suppression caused a DLC1-dependent decrease in NSCLC anchorage-dependent and -independent proliferation. In summary, we identify a posttranslational mechanism for loss of DLC1 and a linkage between CRL4A-FBXW5-associated oncogenesis and regulation of RhoA signaling.Rho-selective GTPase-activating protein | Rho GTPase-activating protein 7 | STARD12 R ho family small GTPases function as extracellular signalregulated on-off switches that cycle between an active GTPbound state and an inactive GDP-bound state. Of the 20 human Rho family GTPases, the best studied are RhoA, Rac1, and Cdc42 (1). Rho-selective guanine nucleotide exchange factors (RhoGEFs) promote GDP-GTP exchange and formation of active Rho-GTP, whereas Rho-selective GTPase-activating proteins (RhoGAPs) stimulate hydrolysis of the bound GTP to return the GTPase to its inactive Rho-GDP form (2, 3). Rho-GTP binds preferentially to its downstream effectors, stimulating a diversity of cytoplasmic signaling cascades that control actin organization, cell morphology and polarity, cell cycle progression and cell proliferation, cell survival and migration, and gene expression (4).In light of their key role in regulating fundamental processes in cell behavior, it is not surprising that the aberrant activation of Rho family small GTPases contributes to cancer and other human disorders (5-8). However, in contrast to the Ras small GTPase, where direct mutational activation leads to insensitivity to inactivation by Ras-selective GTPase-activating proteins (RasGAPs), Rho GTPases are more commonly activated through indirect mechanisms (2, 3). In human cancers, persistent RhoGEF activation or loss of RhoGAP stimulation are common mechanisms leading to aberrant Rho activation. For example, we determined that the P-Rex1 RhoGEF was up-regulated transcriptionally in melanoma through persistent activation of the ERK mitogen-activated protein kinase pathway and the related P-Rex2 isoform was found mutationally activated in melanoma (9, 10).With regard to RhoGAPs, one of the most frequent and common mechanisms involves loss of expression of Deleted in Liver Cancer 1 (DLC1) in liver, breast, lung, ovarian, kidney, colon, stomach, prostate, and other cancers (3,11,12). DLC1 encodes a GAP primarily for RhoA and related isoforms. Initially ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.