Dynamics of carbon dioxide and energy exchange over a small boreal lake were investigated.Flux measurements have been carried out by the eddy covariance technique during two open-water periods (June-October) at Lake Kuivajärvi in Finland. Sensible heat (H) flux peaked in the early morning, and upward sensible heat flux at night results in unstable stratification over the lake. Minimum H was measured in the late afternoon, often resulting in adiabatic conditions or slightly stable stratification over the lake. The latent heat flux (LE) showed a different pattern, peaking in the afternoon and having a minimum at night. High correlation (r 2 = 0.75) between H and water-air temperature difference multiplied by wind speed (U) was found, while LE strongly correlated with the water vapor pressure deficit multiplied by U (r 2 = 0.78). Monthly average values of energy balance closure ranged between 70 and 99%. The lake acted as net source of carbon dioxide, and the measured flux (F CO2 ) averaged over the two open-water periods (0.7 μmol m À2 s À1) was up to 3 times higher than those reported in other studies. Furthermore, it was found that during period of high wind speed (>3 m s À1) shear-induced water turbulence controls the water-air gas transfer efficiency. However, under calm nighttime conditions, F CO2 was poorly correlated with the difference between the water and the equilibrium CO 2 concentrations multiplied by U. Nighttime cooling of surface water enhances the gas transfer efficiency through buoyancy-driven turbulent mixing, and simple wind speed-based transfer velocity models strongly underestimate F CO2 .
Abstract. This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12 July-12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer Correspondence to: J. Williams (jonathan.williams@mpic.de) of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urbanPublished by Copernicus Publications on behalf of the European Geosciences Union. 10600 J. Williams et al.: An overview of meteorological and chemical influences anthropogenic pollution (pentane and SO 2 ) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.
[1] Thinning is a routine forest management operation that changes tree spacing, number, and size distribution and affects the material flows between vegetation and the atmosphere. Here, using direct micrometeorological ecosystem-scale measurements, we show that in a boreal pine forest, thinning decreases the deposition velocities of fine particles as expected but does not reduce the carbon sink, water vapor flux, or ozone deposition. The thinning decreased the all-sided leaf area index from 8 to 6, and we suggest that the redistribution of sources and sinks within the ecosystem compensated for this reduction in foliage area. In the case of water vapor and O 3 , changes in light penetration and among-tree competition seem to increase individual transpiration rates and lead to larger stomatal apertures, thus enhancing also O 3 deposition. In the case of CO 2 , increased ground vegetation assimilation and decreased autotrophic respiration seem to cancel out opposite changes in canopy assimilation and heterotrophic respiration. Current soil-vegetation-atmosphere transfer models should be able to reproduce these observations.
Plant phenological development is orchestrated through subtle changes in photoperiod, temperature, soil moisture and nutrient availability. Presently, the exact timing of plant development stages and their response to climate and management practices 5 are crudely represented in land surface models. As visual observations of phenology are laborious, there is a need to supplement long-term observations with automated techniques such as those provided by digital repeat photography at high temporal and spatial resolution. We present the first synthesis from a growing observational network of digital cameras installed on towers across Europe above deciduous and evergreen 10 forests, grasslands and croplands, where vegetation and atmosphere CO2 fluxes are measured continuously. Using colour indices from digital images and using piecewise regression analysis of time-series, we explored whether key changes in canopy phenology could be detected automatically across different land use types in the network. The piecewise regression approach could capture the start and end of the growing 15 season, in addition to identifying striking changes in colour signals caused by flowering and management practices such as mowing. Exploring the dates of green up and senescence of deciduous forests extracted by the piecewise regression approach against dates estimated from visual observations we found that these phenological events could be detected adequately (RMSE< 8 and 11 days for leaf out and leaf fall 20 respectively). We also investigated whether the seasonal patterns of red, green and blue colour fractions derived from digital images could be modelled mechanistically using the PROSAIL model parameterised with information of seasonal changes in canopy leaf area and leaf chlorophyll and carotenoid concentrations. From a model sensitivity analysis we found that variations in colour fractions, and in particular the late spring 25 “green hump” observed repeatedly in deciduous broadleaf canopies across the network, are essentially dominated by changes in the respective pigment concentrations. Using the model we were able to explain why this spring maximum in green signal is often observed out of phase with the maximum period of canopy photosynthesis in ecosystems across Europe. Coupling such quasi-continuous digital records of canopy colours with co-located CO2 flux measurements will improve our understanding of how changes in growing season length are likely to shape the capacity of European ecosystems to sequester CO2 in the future
During Biogenic Aerosols—Effects on Clouds and Climate (BAECC), the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program deployed the Second ARM Mobile Facility (AMF2) to Hyytiälä, Finland, for an 8-month intensive measurement campaign from February to September 2014. The primary research goal is to understand the role of biogenic aerosols in cloud formation. Hyytiälä is host to the Station for Measuring Ecosystem–Atmosphere Relations II (SMEAR II), one of the world’s most comprehensive surface in situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions, and an extensive suite of parameters relevant to atmosphere–biosphere interactions continuously since 1996. Combining vertical profiles from AMF2 with surface-based in situ SMEAR II observations allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. Together with the inclusion of extensive surface precipitation measurements and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations provide a unique opportunity for investigating aerosol–cloud interactions and cloud-to-precipitation processes in a boreal environment. The BAECC dataset provides opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary layer structures. In addition, numerical models are being used to bridge the gap between surface-based and tropospheric observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.