Retinitis pigmentosa (RP) is a genetically heterogeneous disorder characterized by progressive degeneration of the peripheral retina leading to night blindness and loss of visual fields. With an incidence of approximately 1 in 4000, RP can be inherited in X-linked, autosomal dominant or autosomal recessive modes. The RP13 locus for autosomal dominant RP (adRP) was placed on chromosome 17p13.3 by linkage mapping in a large South African adRP family. Using a positional cloning and candidate gene strategy, we have identified seven different missense mutations in the splicing factor gene PRPC8 in adRP families. Three of the mutations cosegregate within three RP13 linked families including the original large South African pedigree, and four additional mutations have been identified in other unrelated adRP families. The seven mutations are clustered within a 14 codon stretch within the last exon of this large 7 kb transcript. The altered amino acid residues at the C-terminus exhibit a high degree of conservation across species as diverse as humans, Arabidopsis and trypanosome, suggesting that some functional significance is associated with this part of the protein. These mutations in this ubiquitous and highly conserved splicing factor offer compelling evidence for a novel pathway to retinal degeneration.
Cone photoreceptor disorders form a clinical spectrum of diseases that include progressive cone dystrophy (CD) and complete and incomplete achromatopsia (ACHM). The underlying disease mechanisms of autosomal recessive (ar)CD are largely unknown. Our aim was to identify causative genes for these disorders by genome-wide homozygosity mapping. We investigated 75 ACHM, 97 arCD, and 20 early-onset arCD probands and excluded the involvement of known genes for ACHM and arCD. Subsequently, we performed high-resolution SNP analysis and identified large homozygous regions spanning the PDE6C gene in one sibling pair with early-onset arCD and one sibling pair with incomplete ACHM. The PDE6C gene encodes the cone alpha subunit of cyclic guanosine monophosphate (cGMP) phosphodiesterase, which converts cGMP to 5'-GMP, and thereby plays an essential role in cone phototransduction. Sequence analysis of the coding region of PDE6C revealed homozygous missense mutations (p.R29W, p.Y323N) in both sibling pairs. Sequence analysis of 104 probands with arCD and 10 probands with ACHM revealed compound heterozygous PDE6C mutations in three complete ACHM patients from two families. One patient had a frameshift mutation and a splice defect; the other two had a splice defect and a missense variant (p.M455V). Cross-sectional retinal imaging via optical coherence tomography revealed a more pronounced absence of cone photoreceptors in patients with ACHM compared to patients with early-onset arCD. Our findings identify PDE6C as a gene for cone photoreceptor disorders and show that arCD and ACHM constitute genetically and clinically overlapping phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.