Aims The aim of this study was to develop, validate, and illustrate an updated prediction model (SCORE2) to estimate 10-year fatal and non-fatal cardiovascular disease (CVD) risk in individuals without previous CVD or diabetes aged 40–69 years in Europe. Methods and results We derived risk prediction models using individual-participant data from 45 cohorts in 13 countries (677 684 individuals, 30 121 CVD events). We used sex-specific and competing risk-adjusted models, including age, smoking status, systolic blood pressure, and total- and HDL-cholesterol. We defined four risk regions in Europe according to country-specific CVD mortality, recalibrating models to each region using expected incidences and risk factor distributions. Region-specific incidence was estimated using CVD mortality and incidence data on 10 776 466 individuals. For external validation, we analysed data from 25 additional cohorts in 15 European countries (1 133 181 individuals, 43 492 CVD events). After applying the derived risk prediction models to external validation cohorts, C-indices ranged from 0.67 (0.65–0.68) to 0.81 (0.76–0.86). Predicted CVD risk varied several-fold across European regions. For example, the estimated 10-year CVD risk for a 50-year-old smoker, with a systolic blood pressure of 140 mmHg, total cholesterol of 5.5 mmol/L, and HDL-cholesterol of 1.3 mmol/L, ranged from 5.9% for men in low-risk countries to 14.0% for men in very high-risk countries, and from 4.2% for women in low-risk countries to 13.7% for women in very high-risk countries. Conclusion SCORE2—a new algorithm derived, calibrated, and validated to predict 10-year risk of first-onset CVD in European populations—enhances the identification of individuals at higher risk of developing CVD across Europe.
Aims The aim of this study was to derive and validate the SCORE2-Older Persons (SCORE2-OP) risk model to estimate 5- and 10-year risk of cardiovascular disease (CVD) in individuals aged over 70 years in four geographical risk regions. Methods and results Sex-specific competing risk-adjusted models for estimating CVD risk (CVD mortality, myocardial infarction, or stroke) were derived in individuals aged over 65 without pre-existing atherosclerotic CVD from the Cohort of Norway (28 503 individuals, 10 089 CVD events). Models included age, smoking status, diabetes, systolic blood pressure, and total- and high-density lipoprotein cholesterol. Four geographical risk regions were defined based on country-specific CVD mortality rates. Models were recalibrated to each region using region-specific estimated CVD incidence rates and risk factor distributions. For external validation, we analysed data from 6 additional study populations {338 615 individuals, 33 219 CVD validation cohorts, C-indices ranged between 0.63 [95% confidence interval (CI) 0.61–0.65] and 0.67 (0.64–0.69)}. Regional calibration of expected-vs.-observed risks was satisfactory. For given risk factor profiles, there was substantial variation across the four risk regions in the estimated 10-year CVD event risk. Conclusions The competing risk-adjusted SCORE2-OP model was derived, recalibrated, and externally validated to estimate 5- and 10-year CVD risk in older adults (aged 70 years or older) in four geographical risk regions. These models can be used for communicating the risk of CVD and potential benefit from risk factor treatment and may facilitate shared decision-making between clinicians and patients in CVD risk management in older persons.
Aims The benefit an individual can expect from preventive therapy varies based on risk-factor burden, competing risks, and treatment duration. We developed and validated the LIFEtime-perspective CardioVascular Disease (LIFE-CVD) model for the estimation of individual-level 10 years and lifetime treatment-effects of cholesterol lowering, blood pressure lowering, antithrombotic therapy, and smoking cessation in apparently healthy people. Methods and results Model development was conducted in the Multi-Ethnic Study of Atherosclerosis (n = 6715) using clinical predictors. The model consists of two complementary Fine and Gray competing-risk adjusted left-truncated subdistribution hazard functions: one for hard cardiovascular disease (CVD)-events, and one for non-CVD mortality. Therapy-effects were estimated by combining the functions with hazard ratios from preventive therapy trials. External validation was performed in the Atherosclerosis Risk in Communities (n = 9250), Heinz Nixdorf Recall (n = 4177), and the European Prospective Investigation into Cancer and Nutrition-Netherlands (n = 25 833), and Norfolk (n = 23 548) studies. Calibration of the LIFE-CVD model was good and c-statistics were 0.67–0.76. The output enables the comparison of short-term vs. long-term therapy-benefit. In two people aged 45 and 70 with otherwise identical risk-factors, the older patient has a greater 10-year absolute risk reduction (11.3% vs. 1.0%) but a smaller gain in life-years free of CVD (3.4 vs. 4.5 years) from the same therapy. The model was developed into an interactive online calculator available via www.U-Prevent.com. Conclusion The model can accurately estimate individual-level prognosis and treatment-effects in terms of improved 10-year risk, lifetime risk, and life-expectancy free of CVD. The model is easily accessible and can be used to facilitate personalized-medicine and doctor–patient communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.