Some cancers treated with allogeneic hematopoietic stem cell transplantation (HSCT) are sensitive to natural killer cell (NK) reactivity. NK function depends on activating and inhibitory receptors and is modified by NK education/licensing effect and mediated by coexpression of inhibitory killer-cell immunoglobulin-like receptor (KIR) and its corresponding HLA I ligand. We assessed activating KIR (aKIR)-based HLA I-dependent education capacity in donor NKs in 285 patients with hematological malignancies after HSCT from unrelated donors. We found significantly adverse progression-free survival (PFS) and time to progression (TTP) in patients who received transplant from donors with NKs educated by C1:KIR2DS2/3, C2:KIR2DS1, or Bw4:KIR3DS1 pairs (for PFS: hazard ratio [HR], 1.70; P = .0020, Pcorr = .0039; HR, 1.54; P = .020, Pcorr = .039; HR, 1.51; P = .020, Pcorr = .040; and for TTP: HR, 1.82; P = .049, Pcorr = .096; HR, 1.72; P = .096, Pcorr = .18; and HR, 1.65; P = .11, Pcorr = .20, respectively). Reduced PFS and TTP were significantly dependent on the number of aKIR-based education systems in donors (HR, 1.36; P = .00031, Pcorr = .00062; and HR, 1.43; P = .019, Pcorr = .038). Furthermore, the PFS and TTP were strongly adverse in patients with missing HLA ligand cognate with educating aKIR-HLA pair in donor (HR, 3.25; P = .00022, Pcorr = .00045; and HR, 3.82; P = .027, Pcorr = .054). Together, these data suggest important qualitative and quantitative role of donor NK education via aKIR-cognate HLA ligand pairs in the outcome of HSCT. Avoiding the selection of transplant donors with high numbers of aKIR-HLA-based education systems, especially for recipients with missing cognate ligand, is advisable.
Three NOD2 polymorphisms (single nucleotide polymorphism [SNP]8 [2104C>T, Arg702Trp], SNP12 [2722G>C, Gly908Arg], and SNP13 [3020insC, Leu1007 fsins C]), identified as disease-associated variants in Crohn's disease, have recently been suggested as gene markers of the outcome of hematopoietic stem cell transplantation (HSCT). In the present multicenter study of 464 donor-recipient pairs, we focused on the effect of NOD2 mutation(s) on the risk of infections and acute graft-versus-host disease (aGVHD). The presence of SNP13 in recipients, donors, or both was more frequently seen in patients having sepsis than in those lacking sepsis (9 of 48 versus 33 of 386, P = .046). The presence of SNP8 (recipient and/or donor positive) was associated with a higher rate of Herpes viruses reactivation (17 of 21 versus 86 of 173, P = .007). In the SNP8-positive group, a trend for a higher rate of bacteremia well controlled by antibiotics was found (9 of 10 versus 47 of 81, P = .106). In contrast, the presence of SNP13 in recipient and/or donor resulted in a poor response to antibiotics (5 of 11 versus 9 of 10, P = .042). A statistically significant association between the presence of NOD2 SNPs and acute grade > II GVHD was found in a subgroup of HSCT patients who received transplants from unrelated donors with a myeloablative conditioning regimen that included antithymocyte globulin (ATG). In this subgroup of patients, donor positivity for any SNPs investigated (7 of 18 versus 17 of 113, P = .036) and, independently, only the presence of SNP8 (4 of 8 versus 20 of 123, P = .055) were associated with severe grade ≥ II aGVHD. In conclusion, SNP8 positivity in donors or recipients makes patients more prone to Herpes viruses reactivation and bacteremia but not to sepsis. Septic complications were associated with SNP13 polymorphism. SNP8 in donors constitutes a risk factor of severe aGVHD, but only if patients received transplants from unrelated donors and received ATG as part of a conditioning regimen.
on behalf of the Polish Donor-Recipient Matching Study Group Among cancers treated with allogeneic hematopoietic stem-cell transplantation (HSCT), some are sensitive to natural killer (NK) cell reactivity, described as the "missing self" recognition effect. However, this model disregarded the NK cell licensing effect, which highly increases the NK cell reactivity against tumor and is dependent on the coexpression of inhibitory killer cell immunoglobulin-like receptor (iKIR) and its corresponding HLA Class I ligand. We assessed clinical data, HLA and donor iKIR genotyping in 283 patients with myelo-and lymphoproliferative malignancies who underwent HSCT from unrelated donors. We found dramatically reduced overall survival (OS), progression free survival (PFS), and time to progression (TTP) among patients with malignant diseases with the lack of HLA ligand cognate with this iKIR involved in NK cell licensing in corresponding donor (events 83.3% vs. 39.8%, P 5 0.0010; 91.6% vs. 47.7%, P 5 0.00010; and 30.0% vs. 17.3%, P 5 0.013, for OS, PFS, and TTP, respectively). The extremely adverse PFS have withstand the correction when patient group was restricted to HLA mismatched donor-recipient pairs. The incidence of aGvHD was comparable in two groups of patients. In malignant patients after HSCT the missing HLA ligand for iKIR involved in NK cell licensing in corresponding donor ("missing licensing proof") induced extremely adverse survival of the patients due to the progression of malignancy and not to the aGvHD. Avoiding the selection of HSCT donors with the "missing licensing proof" in the malignant patient is strongly advisable.
Hematopoietic stem cell transplantation from anti-cytomegalovirus immunoglobulin G (anti-CMV-IgG) positive donors facilitated immunological recovery post-transplant, which may indicate that chronic CMV infection has an effect on the immune system. This can be seen in the recipients after reconstitution with donor lymphocytes. We evaluated the composition of lymphocytes at hematologic recovery in 99 patients with hematologic malignancies post hematopoietic stem cell transplantation (HSCT). Anti-CMV-IgG seropositivity of the donor was associated with higher proportions of CD4+ (227.963 ± 304.858 × 106 vs. 102.050 ± 17.247 × 106 cells/L, p = 0.009) and CD4+CD25high (3.456 ± 0.436 × 106 vs. 1.589 ± 0.218 × 106 cells/L, p = 0.003) lymphocytes in the blood at hematologic recovery. The latter parameter exerted a diverse influence on the risk of acute graft-versus-host disease (GvHD) if low (1.483 ± 0.360 × 106 vs. 3.778 ± 0.484 × 106 cells/L, p < 0.001) and de novo chronic GvHD (cGvHD) if high (3.778 ± 0.780 × 106 vs. 2.042 ± 0.261 × 106 cells/L, p = 0.041). Higher values of CD4+ lymphocytes in patients who received transplants from anti-CMV-IgG-positive donors translated into a reduced demand for IgG support (23/63 vs. 19/33, p = 0.048), and these patients also exhibited reduced susceptibility to cytomegalovirus (CMV), Epstein–Barr virus (EBV) and/or human herpes 6 virus (HHV6) infection/reactivation (12/50 vs. 21/47, p = 0.032). Finally, high levels (≥0.4%) of CD4+CD25high lymphocytes were significantly associated with better post-transplant survival (56% vs. 38%, four-year survival, p = 0.040). Donors who experience CMV infection/reactivation provide the recipients with lymphocytes, which readily reinforce the recovery of the transplanted patients’ immune system.
Delineating the mechanisms underlying delayed onset GVHD in RIC HSCT recipients is vital to improve the prediction of disease onset and allow more targeted interventions for acute GVHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.