A molecular test for Alzheimer's disease could lead to better treatment and therapies. We found 18 signaling proteins in blood plasma that can be used to classify blinded samples from Alzheimer's and control subjects with close to 90% accuracy and to identify patients who had mild cognitive impairment that progressed to Alzheimer's disease 2-6 years later. Biological analysis of the 18 proteins points to systemic dysregulation of hematopoiesis, immune responses, apoptosis and neuronal support in presymptomatic Alzheimer's disease.
Multifactorial mechanisms underlying late-onset Alzheimer's disease (LOAD) are poorly characterized from an integrative perspective. Here spatiotemporal alterations in brain amyloid-β deposition, metabolism, vascular, functional activity at rest, structural properties, cognitive integrity and peripheral proteins levels are characterized in relation to LOAD progression. We analyse over 7,700 brain images and tens of plasma and cerebrospinal fluid biomarkers from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Through a multifactorial data-driven analysis, we obtain dynamic LOAD–abnormality indices for all biomarkers, and a tentative temporal ordering of disease progression. Imaging results suggest that intra-brain vascular dysregulation is an early pathological event during disease development. Cognitive decline is noticeable from initial LOAD stages, suggesting early memory deficit associated with the primary disease factors. High abnormality levels are also observed for specific proteins associated with the vascular system's integrity. Although still subjected to the sensitivity of the algorithms and biomarkers employed, our results might contribute to the development of preventive therapeutic interventions.
Clinical researchers often propose (or review committees demand) pilot studies to determine whether a study is worth performing and to guide power calculations. The most likely outcomes are that (1) studies worth performing are aborted and (2) studies that are not aborted are underpowered. There are many excellent reasons for performing pilot studies. The argument herein is not meant to discourage clinical researchers from performing pilot studies (or review committees from requiring them) but simply to caution against their use for the objective of guiding power calculations.
Four experiments examined a distinction between kinds of repetition priming which involve either the identification of the form or meaning of a stimulus or the production of a response on the basis of a cue. Patients with Alzheimer's disease had intact priming on picture-naming and category-exemplar identification tasks and impaired priming on word-stem completion and category-exemplar production tasks. Division of study-phase attention in healthy participants reduced priming on word-stem completion and category-exemplar production tasks but not on picture-naming and category-exemplar identification tasks. The parallel dissociations in normal and abnormal memory cannot be explained by implicit-explicit or perceptual-conceptual distinctions but are explained by an identification-production distinction. There may be separable cognitive and neural bases for implicit modulation of identification and production forms of knowledge.
Brain iron elevation is implicated in Alzheimer's disease (AD) pathogenesis, but the impact of iron on disease outcomes has not been previously explored in a longitudinal study. Ferritin is the major iron storage protein of the body; by using cerebrospinal fluid (CSF) levels of ferritin as an index, we explored whether brain iron status impacts longitudinal outcomes in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. We show that baseline CSF ferritin levels were negatively associated with cognitive performance over 7 years in 91 cognitively normal, 144 mild cognitive impairment (MCI) and 67 AD subjects, and predicted MCI conversion to AD. Ferritin was strongly associated with CSF apolipoprotein E levels and was elevated by the Alzheimer's risk allele, APOE-ɛ4. These findings reveal that elevated brain iron adversely impacts on AD progression, and introduce brain iron elevation as a possible mechanism for APOE-ɛ4 being the major genetic risk factor for AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.