A : The ARIADNE project is developing innovative optical readout technologies for two-phase liquid Argon time projection chambers (LArTPCs). Optical readout presents an exciting alternative to the current paradigm of charge readout. Optical readout is simple, scalable and cost effective. This paper presents first demonstration of 3D optical readout of TPC, using CF 4 gas as a proof of principle. Both cosmic rays and an Americium-241 alpha source have been imaged in 100 mbar CF 4 . A single-photon sensitive camera was developed by combining a Timepix3 (TPX3) based camera with an image intensifier. When a pixel of TPX3 is hit, a packet containing all information about the hit is produced. This packet contains the x, y coordinates of the pixel, time of arrival (ToA) and time over threshold (ToT) information. The z position of the hit in the TPC is determined by combining drift velocity with ToA information. 3D event reconstruction is performed by combining the pixel's x, y location with this calculated z position. Calorimetry is performed using time over threshold, a measure of the intensity of the hit.
K: Time projection Chambers (TPC), Noble liquid detectors, Micropattern gaseous detectors, Photon detectors for UV, visible and IR photons (solid-state).
The ARIADNE Experiment, utilising a 1-ton dual-phase Liquid Argon Time Projection Chamber (LArTPC), aims to develop and mature optical readout technology for large scale LAr detectors. This paper describes the characterisation, using cosmic muons, of a Timepix3-based camera mounted on the ARIADNE detector. The raw data from the camera are natively 3D and zero suppressed, allowing for straightforward event reconstruction, and a gallery of reconstructed LAr interaction events is presented. Taking advantage of the 1.6 ns time resolution of the readout, the drift velocity of the ionised electrons in LAr was determined to be 1.608 ± 0.005 mm/μs at 0.54 kV/cm. Energy calibration and resolution were determined using through-going muons. The energy resolution was found to be approximately 11% for the presented dataset. A preliminary study of the energy deposition (dEdX) as a function of distance has also been performed for two stopping muon events, and comparison to GEANT4 simulation shows good agreement. The results presented demonstrate the capabilities of this technology, and its application is discussed in the context of the future kiloton-scale dual-phase LAr detectors that will be used in the DUNE programme.
Optical readout of large scale dual-phase liquid Argon TPCs is an attractive alternative to charge readout and has been successfully demonstrated on a 2x2m active region within the CERN protoDUNE cold box. ARIADNE + uses four Timepix3 cameras imaging the S2 light produced by 16 novel, patent pending, glass THGEMs. ARIADNE + takes advantage of the raw Timepix3 data coming natively 3D and zero suppressed with a 1.6ns timing resolution. Three of the four THGEM quadrants implement readout in the visible light range through wavelength shifting, with the fourth featuring a VUV light intensifier, thus removing the need for wavelength shifting altogether. Cosmic ray reconstruction and energy calibration was performed. Presented is a summary of the detector setup and experimental run, preliminary analysis of the run data and future outlook for the ARIADNE program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.